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Abstract—Hippocampal oscillations, particularly theta (6–12 Hz) and gamma (30–90 Hz) frequency bands, play an impor-

tant role in several cognitive functions. Theta and gamma oscillations show cross-frequency coupling (CFC), wherein the

phase of theta rhythmmodulates the amplitude of the gamma oscillation, and this CFC is believed to reflect cell assembly

dynamics in cognitive processes. Previous studies have reported that CFC strength correlates with the learning process.

However, details on these dynamic correlations have not been elucidated. In the present study, we analyzed local field

potentials recorded from the rat hippocampus during the learning of a rule-switching task. The modulation index, an

index of the CFC strength, became higher in rule-guided behavior than in the no rule condition. The enhanced coupling

between theta and high-gamma oscillations (60–90 Hz) changed during the late stage of learning. In contrast, the cou-

pling between theta and low-gamma oscillations (30–60 Hz) did not show any changes during learning. These results

suggest that the coupling between theta and gamma bands occurs during rule learning and that high- and low-gamma

bands play different roles in rule switching. © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION

In daily life, animals must continue to update knowledge
about the surrounding environment, find better strategies
through a trial and error process, and improve their behavior
to maximize gain. During such learning process, information
coding in our brain should change quickly and flexibly.
Cell assembly hypothesis is thought to be the mechanism

underlying the plasticity of our brain (Hebb, 1949). According
to this hypothesis, synchronized groups of neurons underlie
information processing (Sakurai, 1999; Harris, 2005; Buz-
sáki, 2010). Such neuronal groups can change their mem-
bers and process different information flexibly. Indeed, the
synchronized firings of hippocampal neurons are differentially
modulated by reference and working memory demand
(Sakurai, 1996, 2002) and improve the prediction of place cell
activity pattern from the neuronal ensemble activity (Harris et
al., 2003). The hippocampus is thought to play an important
role in such learning process; however, the detailed
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dynamics of neuronal populations in the hippocampus
remain unclear.
Because local field potentials (LFPs) are thought to per-

form the necessary temporal coordination of neuronal spikes
in neuronal circuitry, these can be used to study the mechan-
isms in the hippocampus. Several lines of evidence suggest
that theta (6–12 Hz) and gamma (30–90 Hz) oscillations par-
ticipate in the mechanisms underlying cell assembly (Lisman
and Jensen, 2013). These two oscillations are prominent
rhythms in the rodent hippocampus and play different roles.
Gamma oscillations modulate the synchronized firing of neu-
ronal populations and help to coordinate groups of neurons
into functional assemblies, that is, cell assemblies (Fries et
al., 2001; Harris et al., 2003). In contrast, theta oscillation is
thought to be a rhythm that binds sequential events into an
episode-like information (O'Keefe and Dostrovsky, 1971;
Dragoi and Buzsáki, 2006; Terada et al., 2017). Although
each type of oscillation has distinct functions, these two
rhythms show strong interactions (cross-frequency coupling,
CFC). In rodent hippocampus, a prominent phenomenon in
CFC is the modulation of gamma oscillation amplitude by
theta oscillation phases (phase-amplitude coupling). This
coupling is thought to be a mechanism that binds local cell
assemblies, which are organized by gamma oscillations, to
the larger assemblies, by theta oscillation (Canolty et al.,
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2010; Lisman and Jensen, 2013). Such CFC was observed
across several brain regions of the rodent hippocampus (Tort
et al., 2008, 2009; Colgin et al., 2009; Shirvalkar et al., 2010;
Takahashi et al., 2014; Amemiya and Redish, 2018; Lopes-
dos-Santos et al., 2018), entorhinal cortex (Yamamoto et
al., 2014), prefrontal cortex (Li et al., 2012), orbitofrontal cor-
tex (OFC) (van Wingerden et al., 2014), and motor cortex
(Igarashi et al., 2013). Electrocorticography, electroencepha-
lography, and direct recording data from the human brain
also showed CFC (Canolty et al., 2006; Kajihara et al.,
2015; Mizuhara et al., 2015; Zheng et al., 2017). These stu-
dies suggest that the CFC reflects a common mechanism
for dynamic information processing in the brain and coordi-
nates cell assembly dynamics.
Studies have reported that the CFC strength changes dur-

ing the learning process (Tort et al., 2008, 2009; Nishida et
al., 2014; van Wingerden et al., 2014). However, there are
still questions related to these studies that remain to be
Fig. 1. Rule switching task.(A) Illustration of the operant chamber. One wall had th
side had the sensor hole for detecting the trial start. (B) The sequence of events for
stimuli were presented simultaneously (top-middle). Rats had to choose the correc
ever, there was no cue to indicate which stimulus they should select. Therefore, rat
error learning. Bottom, illustration of the sequence of events. (C) The four combina
left (L) hole (red: following the tone rule, blue: following the light rule). (For interpreta
the web version of this article.)
answered. First, the effect of reward on CFC is unclear.
Because the probability of receiving a reward is increased
during learning, CFC could be affected by changes in the
reward magnitude. Second, it is unclear if CFC reflects the
process of trial and error or the acquisition of new knowledge.
Third, it remains to be determined if there are differences in
the gamma types coupled with theta in the learning process
even in non-spatial task.
In this study, to address these questions, we introduced a

rule-switching task in the rats (Fig. 1). In this rule-switching
task design, the correct choice can be changed even when
sensory information is the same (Fig. 1C). This design
allowed us to exclude the effects of sensory input from the
learning process. We recorded LFPs in the hippocampus of
rats while they performed this task.
To answer the first question, we have used a yoked control

design, which consists of a reward schedule that matches the
experimental conditions but was irrelevant to the animal's
e sensor holes for choice and the food dispenser, and the wall on the other
the rule switching task. After the trial started (top-left), both visual and tone
t hole by following one of the stimuli to receive a reward (top-right). How-
s had to determine the rule of which stimulus was correct through trial and
tions of light and tone stimuli and the correct responses to the right (R) or
tion of the references to color in this figure legend, the reader is referred to



Fig. 2. An example of learning process.The red line shows the esti-
mated probability of a correct response to the previous rule as a function
of trial number, whereas the blue line is that for the new rule. The dotted
lines show the upper and lower confidence intervals (95%) for the esti-
mated probabilities. The incorrect and correct responses to the new rule
are shown with black and gray marks above the panels, respectively.
An orange dotted line shows the point at which a correct rate for the
new rule exceeded that for previous rule. A pale blue dotted line shows
the end point of a learning trial. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)
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response. This control design allowed us to isolate the effect
of the reward from those of the learning process. To address
the second question, we have separated the learning pro-
cess into an early stage, i.e., when the animals still follow
the previous rule, and a late stage, i.e., when the same ani-
mals learn the new rule.
To answer our third question, it should be noted that there

are at least two types of gamma oscillations in the hippocam-
pus (Colgin et al., 2009; Belluscio et al., 2012; Lopes-dos-
Santos et al., 2018): low-frequency and high-frequency
gamma oscillations. Previous studies suggested that they dif-
fer in regard to cognitive roles, especially memory (Colgin et
al., 2009; Bieri et al., 2014; Zheng et al., 2015a; Lopes-dos-
Santos et al., 2018). For instance, low-frequency gamma is
thought to contribute to memory recall, and high-frequency
gamma is thought to contribute to memory encoding. There-
fore, we have analyzed the CFC dynamics between theta
and low-frequency gamma oscillations and between theta
and high-frequency gamma oscillations in the hippocampal
CA1 area of rats during the rule switching task performance.
EXPERIMENTAL PROCEDURES

Subjects

Twelve male Wistar albino rats (Shimizu Laboratory Sup-
plies, Kyoto, Japan), each weighing 500–580 g at the time
of the experiment, were housed in 250 × 150 × 240-mm
cages on a 12–12-h light–dark cycle. Data from only six rats
were used for the behavioral analysis because of the signifi-
cant noise in the recorded signals. The data from the
remaining six rats were used for both, the LFP and behavioral
analyses. All rats were gently handled, allowed ad libitum
access to water, and provided with sufficient rodent chow
2–3 h after daily training or recording sessions to maintain
80–90% of their starting body weight. All experimental proce-
dures were performed in accordance with the Regulation on
Animal Experimentation Guidelines of Kyoto University
(2007) and were approved by the Animal Research Commit-
tee of Kyoto University.

Apparatus

Rats were trained on a behavioral task in a dim, sound-
attenuated, electrically shielded box (Japan Shield Enclo-
sure, Osaka, Japan) that included a 175 × 320 × 450-mm
operant chamber (O'HARA&CO. LTD, Tokyo, Japan) (Fig.
1A). One wall of the chamber had three illuminated sensor
holes, which were used to detect the nose-poke behavior of
rats. The sensors were 15 mm in diameter and were horizon-
tally placed 60 mm above the floor. Access to the three holes
was controlled using a guillotine door in front of each hole.
However, only the right and left holes were used for the task.
The opposite wall of the chamber also had three illuminated
sensor holes. On this side, only the center hole was used
for the task. A food dispenser located behind the wall deliv-
ered 25 mg of food pellets to a food chamber located in the
center of the wall and 10 mm above the floor. The dispenser
delivered pellets coupled with an intermittent low buzzer tone
(reward tone). This buzzer was also located behind the wall.
Another buzzer, located 400 mm above the floor of the wall,
delivered a continuous buzzer tone when the rats made erro-
neous responses (error tone). Visual stimuli were presented
on the left or right wall using a light-emitting diode (LED).
Tone stimuli consisting of two pure tones (2 or 10 kHz) of
approximately 70 dB sound pressure level were presented
via a loudspeaker (150 mm in diameter) located 300 mm
above the top of the operant chamber. The task was con-
trolled, and behavioral data were recorded using a personal
computer (NEC, Tokyo, Japan).

Behavioral task

Each rat was trained for the rule switching task, which was
largely modified from our previous study (Sakata et al.,
2002). Before each trial, the guillotine door was closed. The
inter-trial interval (ITI) was 7 s, after which, the center hole
of the opposite side wall was illuminated. A trial started when
a rat poked his nose in the illuminated center hole. After the
trial started, the light of the center hole was switched off, while
visual and tone stimuli were presented simultaneously. At the
same time, the guillotine door opened and the two holes (the
left and right holes) on the same side of the wall became illu-
minated and accessible. The rats learned to select one of the
two illuminated holes by following one of the two types of cue
stimuli presented at the same time to get a food reward
through the food dispenser (Fig. 1B). Both visual and tone sti-
muli were continued until the rat poked his nose in either of
the hole. However, only one of the cue types was valid, and
the other cue type was used as a distractor. The cue type
indicating the correct hole was fixed throughout a session,
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and this valid cue type was referred to as the “rule” for the
task. For the “light rule”, the hole on the same side with the
visual stimuli was the correct one. For the “tone rule”, the high
tone (10 kHz) meant that the right hole was correct, while the
low tone (2 kHz) meant that the left hole was correct. Each of
the four combinations of light and tone stimuli was presented
in a random order, and the validity of the light and tone stimuli
for the correct responses was consistent for 50% of the trials
(Match trials) and inconsistent for the other 50% of the trials
(Non-Match trials) (Fig. 1C). An incorrect choice closed the
door, produced a 1-s buzzer noise, and was followed by a
series of correction trials until the rat chose the correct hole.
No data were recorded during the correction trials. Each
training or recording session continued for a maximum of
160 trials, excluding the correction trials, or until 90 min
elapsed.
Experiment schedule

Learning was considered complete once the rats' perfor-
mance reached both of the two following criteria: (1) a lower
95% confidence interval for the estimated learning curve of
the previous rule below 0.5; and (2) more than 15 consecu-
tive correct trials. Learning curves were estimated using the
method previously described (Smith et al., 2004). At least
one session was completed after learning as an overtraining
session (Fig. 2). The data recorded from the first overtraining
session were used for analysis.
After the overtraining session, the rule was switched. The

rats learned the new rule through trial and error because
there was no cue to indicate the rule switch. All rats started
the training of the ruleswitching task with a tone rule as it
was more difficult to learn than the light rule. Sessions with
a tone rule were termed “tone sessions” and sessions with
a light rule were termed “light sessions”. The numbers of rule
switches varied for each rat.
After the rule switching task experiment, a yoked control

experiment was performed, whereby the sequence of trials
Fig. 3. Examples of LFP power spectrum and unit waveforms.(A) Tetrode reco
trum example for an LFP recorded from one rat. Inset, example waveforms of a pu
nels, and another channel was used for LFP recording.
was the same as that for the rule switching experiment, and
both light and tone stimuli were presented randomly. How-
ever, rewards were delivered using the history of reward
delivery for the first rule switching learning (tone rule to light
rule) regardless of the choice response of the rat. In other
words, the yoked control experiment had no rule even though
it had similar sensory inputs with two experimental condi-
tions. This yoked control session was termed “control ses-
sion”. The control experiment was performed after the
overtraining session of the tone rule learning.
To analyze the behavioral data, we calculated the correct

rates for the tone rule and light rule, choice bias, and reaction
time. For example, when a correct rate for the tone rule was
100%, a correct rate for the light rule was 50% because the
indications for tone and light stimuli were the same for 50%
of all trials. We defined choice bias as a higher correct rate
of the two rules for the non-match trials. This index was calcu-
lated to examine how the rats obeyed one rule and ignored
the other rule. Reaction time was defined as the time from
the trial start to the selection of a choice.
Electrode construction, implantation, and
recording

LFP recordings were conducted with three bundles of four
tungsten microwires (HML-coated 12.7 μm in diameter; Cali-
fornia Fine Wire, Grover Beach, CA, USA) as a tetrode. The
microwires were mounted in a 25-mm length 33-gauge
stainless-steel cannula (Small Parts, Miami, FL, USA) with
a protruding tip length of 500 μm. These cannulas were used
as a reference. The tips were cut at right angles with sharp
surgical scissors. The tip impedance was approximately
400 kΩ (at 1 kHz). Cannulas were attached in a row to con-
struct an array of tetrodes, with a center-to-center spacing
of 500 μm between the cannulas. The array of tetrodes was
mounted on a microdrive assembly (McNaughton et al.,
1989) that was designed to allow fine adjustment of the elec-
trode position in the dorso-ventral direction during a chronic
rding sites in hippocampal CA1 (bregma: −3.8 mm). (B) A multitaper spec-
tative pyramidal cell. Unit activities were recorded from three tetrode chan-
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recording. After completion of the first learning of the rule
switching task with the tone rule, each rat was anesthetized
with isoflurane (0.5–3%), and the microdrive with electrodes
was chronically fixed to the skull above the right hippocampal
CA1 region (AP −3.8 mm, ML 2.0 mm, DV 1.0 mm) (Fig.
3A). The craniotomies were filled with white petrolatum to a
level slightly above the point where the tetrodes exited the
skull surface. After the supports of the microdrives and can-
nulas were coated with a thin film of white petrolatum, the
entire assembly was embedded on the skull surface using
dental cement. The rats were allowed to recover for approxi-
mately 1 week following the implantation surgery. We low-
ered the electrodes post-surgery to obtain stable long-term
recordings. Head stages containing 24 field-effect transistors
(2SK371, Toshiba, Tokyo, Japan) set as source followers
were used to connect a 24-channel plastic connector cemen-
ted to the animal's head. LFPs were amplified, filtered
(0.5–300 Hz), and recorded at 20 kHz on a custom-made
personal computer with a 24-channel A/D converter (16-bit
resolution; Contec Co. Ltd., Osaka, Japan). The tetrodes
were slowly advanced towards the hippocampus while unit
activity and LFP data were monitored. For the LFP recording,
the most prominent tetrode was used for analysis. We used
one recording channel for LFP recording and the other three
channels for unit recording. Recorded spike trains were
sorted to isolate individual neuronal activities using indepen-
dent component analysis (ICA) and k-means clustering
called ICsort (Takahashi et al., 2003a, 2003b). We selected
recording positions (pyramidal cell layer of the dorsal CA1)
depending on the LFP power of the theta band and multiple
single unit activities of putative pyramidal cells (Fig. 3B). We
judged putative pyramidal cells based on their wide spike
shape (mean width > 0.25 ms) and low average firing rate
(<5 Hz) (Fig. 3B). The recording points were fixed throughout
experiments. The unit activity data were only used for this
purpose and were not analyzed. The data from trials with
poor signal-to-noise ratio were excluded from the analysis.
We used data from both correct and error trials, to examine
LFP dynamics throughout the learning process.
Fig. 4. Behavioral performance during overtraining sessions(A)
Mean correct rates for both rules for each condition. Red bars show the
mean correct rates for the tone rule, and blue bars show the mean correct
rates for the light rule. (B) Mean choice bias. (C) Boxplot of reaction times
for each condition. Lines inside the box represent medians. The bottom
and top of the box show the first and third quartiles, respectively. Whiskers
extend to the most extreme data point that is no more than 1.5 times the
interquartile range from the box. Open circles show the values of data
points that lie beyond the whiskers. Error bars in A and B show the stan-
dard error of the mean. Asterisks indicate significant differences of
p < 0.05. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Calculation of the power of LFPs

We used the Chronux toolbox (http://www.chronux.org)
(Mitra and Bokil, 2007) and custom-written programs in
MATLAB (MathWorks, Natick, MA, USA) for our multi-taper
Fourier analysis. Before analysis, the direct current offsets,
slowly changing components, and 60-Hz line noise were
removed from the LFP data by applying the locdetrend and
rmlinese functions in the Chronux toolbox. The theta, low
gamma, and high gamma frequency bands were defined as
6–12, 30–60, and 60–90 Hz, respectively. To calculate the
power spectrum, the Chronux function (mtspecgramc.m)
was used with the following parameters: 1-s window size,
50-ms time step, time-bandwidth product of 5, and taper
count of 9. The power spectra were normalized using the
mean of the power during the ITI (−5 s to −1 s from trial
start). We defined four events: before 1 s from trial start
(PRE), after 1 s from trial start (RUN1), before 1 s from
choice (RUN2), and after 1 s from choice (POST). In
statistical test, we calculated mean LFP powers for each ani-
mal in three conditions (tone rule, light rule, and control con-
dition) and four trial events (PRE, RUN1, RUN2, and
POST) and performed two-way repeated measures ANOVA.

http://www.chronux.org
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Evaluation of phase-amplitude coupling

To visualize the phase-amplitude coupling between theta and
gamma oscillations, we calculated the frequency plot of the
mean normalized power for the theta phase (Takahashi et
al., 2014). These plots were based on the previously reported
theta trough time-locked plots (Canolty et al., 2006; Tort et al.,
2008), and drawn based on the theta phase angle. In addi-
tion, we constructed a histogram of the number of gamma
peaks with 18° bins (Tort et al., 2008; Takahashi et al.,
2014). Hilbert transformation of the filtered LFPs was per-
formed, and the peak of gamma power was detected. This
peak detection was performed within two consecutive theta
cycles to prevent counting small peaks.
To quantify the intensity of phase-amplitude coupling

between two frequency bands of interest (phase frequency
and amplitude frequency), a modulation index (MI) was cal-
culated and comodulograms were plotted (Canolty et al.,
2006; Tort et al., 2008, 2009). The MI based on a normalized
entropy measure is considered a suitable way to assess cou-
pling intensity (Tort et al., 2010). First, the raw LFP signals
were filtered at the phase frequency band and amplitude fre-
quency band, respectively. Next, Hilbert transformation was
performed, and the phase time series and amplitude time ser-
ies were calculated. Then, the amplitude distribution over
phase bins was constructed, and the divergence of the
observed amplitude distribution from the uniform distribution
was measured as the MI (Tort et al., 2008, 2009, 2010). A
comodulogram is the color plot which shows MIs between
frequency bands of the horizontal axis and amplitude band
of the vertical axis. To plot the comodulograms, 4 and
10 Hz bins were used for frequency bands and amplitude fre-
quency, respectively, and plotted MIs for these frequency
windows as color maps.
For calculations, 20 Hz bandwidth data in each high and

low gamma band with the most prominent coupling with theta
oscillation for each rat were selected. First, the raw MI (Mraw)
was calculated. Next, the rawMIs were normalized using 200
surrogate data with shuffled phase and amplitude values
within the trials (Kajihara et al., 2015) according to the follow-
ing formula:

Mnorm ¼ Mraw−surrogate

� �

surrogate

where μsurrogate denotes a mean of MIs from 200 surrogate
data and σsurrogate denotes the standard deviation of surro-
gate data. To examine the change in MIs during trial events
or the learning process, the Mnorm values were z-
transformed for each rat to normalize individual differences.
Statistical significance of coupling was assessed with a z-
test using surrogate data.
Fig. 5. Changes in LFP power during trial events (A) Example of LFP traces dur
purple lines represent the filtered LFP for theta, low-frequency gamma, and high-fr
for each condition (upper panels: tone session, middle panels: light session, lower p
mean power during the ITI and then averaged. Left panels show data for the 2 s su
rounding the choice (±1 s). The vertical dashed white line denotes the center zero.
bands. HG and LG denote high-frequency gamma band and low-frequency gamm
(For interpretation of the references to color in this figure legend, the reader is ref
Assessment of learning effects

To investigate the effect of learning, we divided the learning
process into two stages (i.e., early and late stages), distin-
guished by the point at which the correct rate for the new rule
exceeded that for the previous rule. To detect the reversal
point, we estimated the learning curves for both, new and
previous rules (Smith et al., 2004). To assess learning effects
on theta–gamma couplings, we divided each session into
blocks consisting of 30 trials to ensure that MIs could be cal-
culated (30 trials × 1 s for each event). The remaining trials
were excluded from this analysis. To assess the relationship
between the learning process and LFP data, we performed a
regression analysis between the correct rates of non-match
trials and LFP data.

Statistical analysis

For analysis of behavioral data, paired t-test was performed for
correct rate, one-way ANOVA for choice bias, and Kruskal–
Wallis test for reaction times. A non-parametric test was used
to compare reaction time data because the distribution of
reaction time data does not follow a normal distribution.
Two-factor repeated measures ANOVA was used to com-
pare powers of LFPs and MIs. Tukey's HSD test was per-
formed as post hoc analysis. To statistically examine the
relationships between MIs and behavioral data, regression
analysis was performed. Before parametric statistical tests
were performed, normality of distributions and equal variances
were confirmed using Kolmogorov–Smirnov test and Bartlett
test respectively. Statistical analyses were performed using R
(R version 3.0.1; The R Project for Statistical Computing).

Histology

After the experiment was completed, rats were deeply
anesthetized with an overdose of sodium pentobarbital
(120 mg/kg) before the brains were perfused with a 10% buf-
fered formalin solution. Following fixation, the brain was sec-
tioned at a thickness of 50 μm. The locations of the electrode
tips and cannula tracts in the brain was identified using a
stereotaxic atlas (Paxinos and Watson, 2009).
RESULTS

Rats can learn the rule switching task

All animals performed the task for both, the tone and light
rules. To examine the behavioral differences between these
rules, we compared the performances during the overtraining
sessions (i.e., a session after reaching the criteria for the tone
rule and light rule) (Fig. 4). We calculated the correct rates for
both, tone and light rules, from each overtraining session (Fig.
ing the RUN2 event. The black line is the raw LFP. The green, brown, and
equency gamma bands, respectively. (B) The mean power spectrograms
anels: control session). Data from each animal were normalized using the
rrounding the trial start (±1 s), and right panels show data for the 2 s sur-
The horizontal solid dotted black lines indicate borders of each frequency
a band, respectively. Error bars represent the standard error of the mean.
erred to the web version of this article.)



Fig. 6. Comparison in LFP power of trial eventsMean power of delta (A), theta (B), beta (C), low-frequency gamma (D), and high-frequency gamma (E) for
each condition (left: tone session, middle: light session, right: control session) and event. Error bars represent the standard error of the mean.

Fig. 7. Theta modulation of gamma oscillations Frequency plots of the mean normalized power for the theta phase for each condition (upper: tone session,
middle: light session, lower: control). Data for ±8 cycles (nearly ±1 s) from the theta trough nearest to the trial start (left) and choice (right). The black solid line
shows the theta phase. The vertical dashed white line denotes the center zero. The horizontal solid gray line shows the border between two gamma bands
(60 Hz).
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Fig. 8. Histograms showing the number of gamma peaks in each theta phaseLeft column (Brown bars): low-frequency gamma, right column (purple
bars): high-frequency gamma. The black line shows the theta phase. The bin width is 18°. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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4A). To calculate the correct rates in the control sessions, we
used data from the last sessions. For tone and light sessions,
the correct rates for the new rule were significantly higher
than the previous rule (paired t-test, tone session: t(13) =
−15.4461, p < 0.001, light session: t(20) = 20.0644,
p < 0.001). However, the difference in the control session
was not significant (t(9) = 1.7056, p = 0.1223, n.s.). To com-
pare choice tendencies among the experimental conditions,
we calculated choice bias. There were significant differences
in choice bias among the conditions (Fig. 4B; one-way
ANOVA, F(2, 42) = 17.18, p < 0.001). The post hoc analysis
(Tukey's HSD test) showed significant differences between
the tone session vs. control session (p < 0.001) and light
session vs. control session (p < 0.001). However, there was
no significant difference in reaction times (Fig. 4C; Kruskal-
Wallis test, p = 0.4261, n.s.). These results show that rats
understood the switching of the rules using trial and error
learning, and used the correct rule during the overtraining
session, but they did not show a rule preference during con-
trol sessions.
Effect of trial events and rules on LFP power

To assess the effect of trial events and rules on the LFP
power, we recorded LFPs from the hippocampal CA1 area
during an overtraining session and calculated the normalized



Fig. 9. Phase-amplitude coupling during overtraining sessions(A) Mean phase-amplitude comodulograms for each condition and event (upper: tone ses-
sion, middle: light session, lower: control). The color map shows the MIs between phase frequency of the horizontal axis and amplitude frequency of the ver-
tical axis. Data recorded from six rats were used to calculate the comodulograms and averaged to plot comodulograms. Areas enclosed by dotted black lines
show significant couplings for all subjects. (B) Mean normalizedmodulation index between theta and beta (left), theta and low-frequency gamma (middle), and
theta and high-frequency gamma (right), for each condition and event. Error bars represent the standard error of the mean. Asterisks indicate significant dif-
ferences of p < 0.05.
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Fig. 10. Example of change of theta–gamma coupling through rule
learningAn example of the change in coupling strength between theta
and high-frequency gamma. The colored solid line shows normalized
MIs as a function of learning blocks. The orange part of the solid line
shows the early learning stage, and the pale blue part shows the late
learning stage. The black dashed line shows the correct rate for non-
match trials per block. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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spectrograms for each condition to investigate changes in
LFP power during the trials. Filtered LFP traces show promi-
nent activities of theta, low gamma, and high gamma bands
(Fig.5A). To investigate LFP dynamics within a trial, we used
four events (PRE, RUN1, RUN2, and POST). Because the
median of reaction time was approximately 2 s (Fig. 4C),
we considered the “RUN1” event as the former part and
“RUN2” as the latter part of the period for choice selection.
Fig. 5B shows that a prominent gamma band switched during
the trial events. Low-frequency gamma power was prominent
before the trial start (PRE) and after choice selection (POST),
Fig. 11. Relationships between theta–gamma coupling and correct ratesScatt
ditions and events. The upper panels show data for the coupling between theta an
between theta and high-frequency gamma. The orange dots represent data from
blocks. Regression lines were plotted for significant relationships (orange: early s
in this figure legend, the reader is referred to the web version of this article.)
whereas high-frequency gamma power was strong during
choice selection (RUN1 and RUN2). To examine if there was
significant change of LFP power between rules or task events,
weperformeda two-factor repeatedmeasuresANOVA for each
frequency bands. The results revealed no significant difference
among conditions and events in delta power (1–4 Hz) and low-
frequency gamma power (Fig. 6). However, theta power (F(3,

42) = 127.384, p < 0.001), beta power (15–30 Hz) (F(3, 42) =
4.507, p < 0.01), and high-gamma power (F(3, 42) = 8.32,
p < 0.001) showed significant changes during the events
but not in conditions. For the event effects in theta power,
post hoc analysis (Tukey's HSD test) revealed significant dif-
ferences in all combinations of events except for PRE vs.
RUN2. This suggested that theta power became prominent
during choice running, especially in RUN1. For the event
effects in high-gamma power, post hoc analysis revealed sig-
nificant differences in PRE vs. RUN1, PRE vs. RUN2, RUN1
vs. POST, and RUN2 vs. POST. This suggested that
changes in high-gamma power had similar tendencies to
changes of theta power. In post hoc analysis of beta power,
no significant difference between events was detected.
To examine the possibility that the power of LFPs was

affected by sensory inputs, we also compared the power of
each band among the four stimulus combinations using a
two-factor repeated-measure ANOVA. Only one case
(RUN2 event of light rule session) showed a significant differ-
ence in power of high-gamma power, suggesting that there
was no consistent effect of sensory input on LFP power.
Effect of trial events and rules on theta–gamma
coupling

We investigated the presence of theta and gamma band cou-
pling during the overtraining sessions. To visualize periodic
er plots of normalized MIs vs. the correct rates in non-match trials for con-
d low-frequency gamma, and the lower panels show data for the coupling
early stage blocks, and pale blue squares represent data from late stage
tage, pale blue: late stage). (For interpretation of the references to color
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modulations between theta and gamma, we calculated a fre-
quency plot of the mean normalized power for the theta
phase of each condition (Fig. 7). In Fig. 7, both low-
frequency and high-frequency gamma bands show a stripe-
like pattern similar to a theta rhythm. This pattern suggests
that gamma power was modulated by the theta rhythms.
Furthermore, Fig. 8 shows that the amplitude of high-
frequency gamma became prominent around the descending
theta phase, and that of low-frequency gamma became pro-
minent around the negative trough of the theta cycle. This
result confirms that high-frequency and low-frequency
gamma bands show distinct coupling patterns with theta
oscillations.
Next, we calculated the CFC using the MI and

plotted comodulograms to quantify the theta–gamma
coupling for each condition. These comodulograms
show that the theta phase strongly modulated the
gamma amplitude in all the conditions (Fig. 9A). The
coupling between theta and high-frequency gamma
appeared stronger than the coupling between theta and
low-frequency gamma; however, the theta and low-
frequency gamma coupling also showed statistical signifi-
cance in most cases. In addition, the coupling for the control
condition appeared weaker than the experimental conditions
as shown in Fig. 9A. To quantify this difference, we compared
the MIs among the conditions and events using a two-factor
factorial ANOVA (Fig. 9B). For the coupling between theta
and low-frequency gamma, the effects of condition (F(2,

56) = 3.361, p < 0.05) and event (F(3, 56) = 6.407, p < 0.001)
were significant. For the condition effects, a post hoc analysis
(Tukey's HSD test) revealed a significant difference between
the light conditions vs. the control condition (p < 0.05). For
the event effects, the MI for POST was significantly weaker
than the other three events (PRE vs. POST: p < 0.05,
RUN1 vs. POST: p < 0.05, RUN2 vs. POST: p < 0.001).
For the coupling between theta and high-frequency gamma,
the effect of condition was significant (F(2, 56) = 10.793,
p < 0.001), but the effect of events was not (F(3, 56) = 2.604,
p = 0.06, n.s.). For the condition effects, post hoc analysis
showed significant differences between the light condition
vs. the control condition (p < 0.001) and between the tone
conditions vs. the control condition (p < 0.01). These results
show that theta–gamma coupling was modulated by rule-
guided behavior. MIs between theta and beta oscillation were
also compared. However, neither event nor condition effects
showed significant differences. As the coupling between
theta and beta oscillations did not show significant changes
between conditions, this coupling was excluded from
subsequent analyses.
Effect of learning a new rule on theta–gamma
coupling

We investigated the effect of rule learning on both theta and
low-frequency gamma coupling and theta and high-
frequency gamma coupling. In this analysis, we only used
data from the first rule switching process (tone rule to light
rule) because the LFP signals tended to become unstable
after a second rule switch process. In the first switching
process, animals already understood the tone rule, whereas
the light rule was novel. Fig. 2 shows an example of learning
process. The learning process was separated into two stages
(early and late). The mean number of trials for the early stage
was 298.67 (SD = 162.4), and the mean number of trials until
the completion of learning was 681.67 (SD = 261.88). Fig. 10
shows an example of the change in MIs of theta and high-
frequency gamma coupling during the RUN1 event. This
example shows that theta–gamma coupling increased with
the learning process, as previously reported (Tort et al.,
2008, 2009; Lopes-dos-Santos et al., 2018). To statistically
examine these relationships, we performed a regression ana-
lysis of normalized MIs vs. the correct rate for each event
(Fig. 11). Fig. 11 shows different tendencies between theta
and low-frequency gamma coupling and theta and high-
frequency gamma coupling. For theta and low-frequency
gamma coupling, the coupling during POST became weaker
during the early learning stage. In contrast, theta and high-
frequency gamma coupling showed learning stage-
dependent dynamics. Coupling during POST became
weaker during the early stage as with low gamma. During
the late stage, coupling strengths during PRE and RUN1
became stronger, whereas the coupling during RUN2
became weaker. We also investigated the effect of match
trials vs non-match trials on the theta–gamma coupling; how-
ever, no relationship was found between the trial types and
changes in coupling intensity.
To investigate the relationship between correct rate and

reaction time, and the relationships between the correct rate
and LFP power, regression analysis was performed (Fig.
12). For this analysis, LFP data from events in which each
LFP band showed the most prominent power (theta: RUN1,
low gamma: POST, high gamma: RUN2) were used. Fig.
12. shows that there were no significant relationships
between reaction time and learning, or between learning
and LFP powers.
DISCUSSION

In this study, we designed a novel rule-switching task
with a control condition, and recorded LFPs from the
hippocampal CA1. Our results showed that the strength
of cross frequency coupling between theta and gamma
oscillations was stronger in rule-guided behavior than
that in the no rule condition. The results also confirmed
previous studies that have reported an enhancement of
theta–gamma coupling in the rodent hippocampus during
learning (Tort et al., 2008, 2009; Lopes-dos-Santos et al.,
2018). In addition, coupling between theta and high-
frequency gamma showed characteristic dynamics during
the late stage of learning.
As it is known that spikes can contaminate high frequency

oscillations of LFPs, caution must be exercised when dis-
cussing activities of these oscillations. Belluscio et al.
(2012) reported that spikes can affect oscillations above
100 Hz in the hippocampus. As we analyzed oscillations
under 90 Hz, we considered that the effects of spike contam-
ination were not critical for our results.



Fig. 12. Relationships between correct rate and other indicesScatter plot of reaction times (A), theta power (B), low frequency gamma power (C), and high frequency gamma power (D) vs. the correct rate in non-
match trials. The orange dots represent data from early stage blocks, and pale blue squares represent data from late stage blocks. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Rats learned rules by trial and error

Fig. 4A and B shows that the animals learned to use the cor-
rect rule during experimental conditions; however, they did
not use any specific rule during the control condition. In addi-
tion, there was no significant difference in reaction times
between the conditions (Fig. 4C). These results suggest that
even if the motor output, reward, and sensory inputs were
similar under both the conditions, animals did not have any
behavioral rules during the control condition.

Theta–gamma coupling in the hippocampus is
involved in the processing of rules

Besides the involvement in spatial information processing
(O'Keefe and Dostrovsky, 1971), previous studies have
revealed that the hippocampus is involved in various types
of non-spatial and abstract information processing, such as
context (Wood et al., 2000; Takahashi, 2013), working mem-
ory (Sakurai, 1994; Deadwyler et al., 1996; Takahashi and
Sakurai, 2009), and temporal information (MacDonald et al.,
2011; Nakazono et al., 2015). In addition to those previous
studies, our study showed that the theta–gamma coupling
in the hippocampus is involved in the processing of abstract
information (i.e., rules).
In general, rule learning is thought to be processed by the

prefrontal cortex (Hoshi et al., 2000; Rich and Shapiro,
2009; Durstewitz et al., 2010). However, it was reported that
the interaction between the prefrontal cortex and hippocam-
pus also plays an important role in this type of learning (Peyr-
ache et al., 2009; Benchenane et al., 2010). Furthermore,
hippocampal neurons change their activity when the rule or
strategy changes (Smith and Mizumori, 2006; Gill et al.,
2011; Takahashi, 2013). A pharmacological inactivation
study also reported that the dorsal hippocampus is necessary
for the learning of declarative-like memories of the relation-
ship between non-spatial cues and reward (Jacquet et al.,
2013). Considering these previous reports, it is plausible that
the hippocampus is involved in even non-spatial task learn-
ing. Indeed, previous studies have already shown that the
strength of theta–gamma coupling became stronger through
learning that the CFC in the hippocampus contributes to rule
learning (Tort et al., 2008, 2009; Lopes-dos-Santos et al.,
2018). However, the effect of reward magnitude was not con-
sidered and might be a confounding factor in these previous
studies.
To exclude this possibility and to answer our first

question, we compared the LFPs between rule-guided
conditions and the control condition. As the control con-
dition had the same sensory stimulus as that in experi-
mental conditions and rats made their decision
regardless of stimulus in the control condition (Fig. 4B),
we considered that this control condition could disentangle
the effect of knowledge of rules from sensory input and other
factors. The LFP power did not significantly change based on
the condition (Fig. 6). However, the strength of theta–gamma
coupling was weaker in control condition than the experimen-
tal conditions (Fig. 9). Because sensory inputs, motor out-
puts, and the amount of reward were similar across the
conditions, and rats made their decisions independently of
presented stimuli (Fig. 4B), it is likely that the strength of
theta–gamma coupling reflected knowledge of the rule (task
demand). These results rule out the possibility that enhance-
ment of theta–gamma coupling was caused by an increase in
the amount of reward.
In contrast, theta–beta couplings did not show task-

related changes (Fig. 9B); nevertheless, the power of beta
oscillation showed significant changes through task events
(Fig. 6C). These results suggested that beta and gamma
oscillations have different functions and underlying mechan-
isms. A previous study on beta oscillation suggested that
beta oscillation is a prominent rhythm in the olfactory pathway
and may reflect top-down signals through this pathway
(Martin and Ravel, 2014). Another study reported task-
related beta oscillations in hippocampal CA1 of rats perform-
ing an odor reward association task (Rangel et al., 2016).
Therefore, it is plausible that beta oscillations did not play
an important role in our task because it was not an odor-
dependent task.
Differential dynamics in gamma oscillations during
learning

Previous studies have reported that there are functional dif-
ferences between low and high-frequency gamma bands
(Colgin et al., 2009; Bieri et al., 2014; Zheng et al., 2015a).
Furthermore, a recent study suggested that there were also
functional differences in the gamma types in coupling with
theta during the learning of a spatial task (Lopes-dos-
Santos et al., 2018). Our results also showed differences in
the effects of learning on low and high-frequency gamma
bands (Fig. 11). In the early learning stage, both low and
high-frequency gamma decreased coupling strength with
theta. Because this decrease occurred during the 1 s after
choice (POST) when animals could determine the result of
their choice, there is a possibility that these changes were
related to prediction error. Just after rule switching, animals
may predict reward even in error trials for the new rule and
show prediction error. However, such prediction errors would
disappear as learning progressed.
On the other hand, changes in theta–gamma coupling in

the late learning stage were more complex. During the ±1 s
from trial start (PRE and RUN1), the strength of theta–high
gamma coupling increased as the learning progressed. In
contrast, it became weak during the 1 s before choice
(RUN2). The increase in theta and high gamma coupling
strength through learning is in agreement with the results of
previous studies (Tort et al., 2008; Lopes-dos-Santos et al.,
2018). Notably, changes in theta–high gamma coupling dur-
ing the former and latter parts of choice run (RUN1 and
RUN2) showed opposing tendencies. Amemiya and Redish
(2018) suggested that the high gamma dominant theta cycle
appears when animals approach a choice point in a spatial
decision-making task. Our results were inconsistent with this
previous report. However, this discrepancy may be explained
by the difference in behavioral tasks. In our task, cues were
presented just after the trial start. Therefore, it is possible that
the timing of decision making was shifted from near choice
(RUN2) to trial-start (RUN1) because the animals were able
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to make decisions faster as learning progressed. It may also
be possible that changes in spatial information of decision
making caused changes in theta–high gamma coupling. As
we were unable to determine where the rats performed deci-
sion making in this task, we could not exclude this possibility.
However, there was no difference in power of LFP and CFC
between right and left hole choices; thus, the effect of spatial
information on changes in theta–gamma coupling are likely to
be limited.
With regard to our second and third questions, our data

suggested that theta–gamma coupling in the hippocampus
was not involved in the trial and error process. Instead, it
was involved in the process of knowledge acquisition.
Furthermore, only theta–high gamma coupling showed corre-
lated changes with learning.
However, it remains unclear if changes in theta–gamma

coupling were affected by other factors. There are two possi-
ble factors, running speed and powers of LFPs, which may
affect theta–gamma coupling (Tort et al., 2009; Sheremet et
al., 2019). Tort et al. (2009) reported that MI calculation can
be affected by LFP powers. Because running speed can alter
theta power (Montgomery et al., 2009) and gamma power
(Ahmed and Mehta, 2012), especially high-gamma power
(Zheng et al., 2015b), it is plausible that changes in running
speed may affect both LFP power and theta–gamma cou-
pling. As shown in Fig. 6, significant changes in theta power
and high-gamma power were detected through events, and
these powers became stronger during running. However,
comparison of reaction times between conditions showed
no significant changes (Fig. 4C), and reaction times did not
change through learning (Fig. 12A). Therefore, the changes
in theta–gamma coupling by events and learning are unlikely
to be due to changes in reaction times. Nevertheless, the
possibility remains that changes in LFP power affected the
coupling regardless of reaction times. This hypothesis is
plausible because both theta power and gamma power can
be altered by cognitive state (Montgomery and Buzsáki,
2007; Nakazono et al., 2015). However, as shown in Fig.
12B–D, there was no significant relationship between LFP
powers and leaning. These results suggested that neither
changes in reaction time nor changes in LFP power could
explain changes in theta–gamma couplings in our task.
What role does theta–gamma coupling have in
rule-switching learning?

As Fig. 8 shows, high-frequency gamma and low-frequency
gamma were coupled with different phases of theta. This
phenomenon is thought to reflect the switching of information
processing in the hippocampus by the theta phase (Has-
selmo, 2005; Mizuseki et al., 2009; Schomburg et al.,
2014). It is considered that the high-frequency gamma
reflects information flow from the entorhinal cortex to CA1,
whereas low-frequency gamma reflects information flow from
the CA3 region (Colgin et al., 2009). In spatial information
coding, high-frequency gamma and low-frequency gamma
are thought to be related to “retrospective coding” and “pro-
spective coding”, respectively (Bieri et al., 2014; Takahashi
et al., 2014). Retrospective coding is used to encode sensory
or spatial information in the past, and prospective coding is to
recall information in future behavior.
As we hypothesized, our data showed that there were dif-

ferent effects on high-frequency gamma and low-frequency
gamma coupling with theta during learning. The results on
the increase in strength of theta–high gamma coupling
through learning are consistent with previous reports (Tort
et al., 2008; Lopes-dos-Santos et al., 2018). Our results also
revealed that such enhancement occurred not during trial
and error challenge, but when the animals acquired new
knowledge. Our data also suggested that theta and low-
frequency gamma coupling did not have important roles in
the learning of this task.
The hippocampal CA1 region is thought to participate in

cognitive tasks as a part of a neuronal circuit, composed of
the PFC, OFC, thalamic nucleus reuniens (NR), and medial
entorhinal cortex (MEC) (Benchenane et al., 2010; Yama-
moto et al., 2014; Ito et al., 2015). A previous study
(Yamamoto et al., 2014) suggested that the PFC and OFC
send information about rules to both the hippocampal CA1
and MEC via the NR, and this projection drives the CA1-
MEC circuit to process task-related sensory information. We
speculate that the changes in theta and high-frequency
gamma coupling during learning reflect changes in activity
of this circuit. During the early stage of learning when rats
continued the task with trial and error, they did not have reli-
able information on rules, and the PFC/OFC-CA1/MEC cir-
cuit was not involved. However, after rats started learning
the new rule, this neural circuit was engaged. We speculate
that the PFC and OFC send information about rules to the
hippocampus and MEC, which drive CA1-MEC circuits to
process sensory inputs more effectively. The coupling
between theta and high-frequency gamma became stronger
because the CA1-MEC circuit became more active. This
enhancement occurred during the late learning stage. In con-
trast, coupling just before choice became weaker because
animals decided their actions just after stimulus onset during
the late learning stage.
These results suggest the possibility that CFCs have rich

information about non-spatial cognitive tasks and contribute
to dynamic changes in cell assembly. Furthermore, these
dynamics in the hippocampus are thought to reflect informa-
tion flow from other brain areas. However, in this study, we
did not elucidate causal relationships between theta–gamma
coupling and dynamics of cell assembly. Future work is
needed to reveal the relationships among CFC, types of
oscillation, dynamic cell assembly, and the interactions
among different brain areas.
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