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SUMMARY

It is widely assumed that trial-by-trial variability in visual detection performance is explained by the fidelity of
visual responses in visual cortical areas influenced by fluctuations of internal states, such as vigilance and
behavioral history. However, it is not clear which neuronal ensembles represent such different internal states.
Here, we utilized a visual detection task, which distinguishes internal states in response to identical stimuli,
while recording neurons simultaneously from the primary visual cortex (V1) and the posterior parietal cortex
(PPC).We found that rats sometimeswithheld their responses to visual stimuli despite the robust presence of
visual responses in V1. Our unsupervised analysis revealed distinct population dynamics segregating hit
responses from misses, orthogonally embedded to visual response dynamics in both V1 and PPC. Hetero-
geneous non-sensory neurons in V1 and PPC significantly contributed to population-level encoding accom-
paniedwith themodulation of noise correlation only in V1. These results highlight the non-trivial contributions
of non-sensory neurons in V1 and PPC for population-level computations that reflect the animals’ internal
states to drive behavioral responses to visual stimuli.

INTRODUCTION

Identical sensory stimuli sometimes evoke different perceptual

and behavioral responses. For instance, in a sensory detection

task, human or animal subjects are instructed or well trained to

reliably report the presence or absence of sensory stimuli to

obtain rewards. When the sensory stimulus is near the threshold

to prompt a decision, subjects’ responses vary across trials

despite their best efforts to get the reward. Interestingly, even

if they report absence of stimuli, it is sometimes possible for

them to correctly guess above chance level if they are forced

to answer.1–4 Revealing the neuronal mechanisms underlying

such trial-by-trial variability of perceptual responses is crucial

to understand how the brain exploits sensory information for

optimal decision making.

Trial-by-trial variance of responses to identical stimuli is believed

to reflect noise in the conversion of sensory information intomotor

outputs.5 It has been demonstrated that the variability of the firing

rates of sensory neurons is responsible for the variable response

to different choices.6,7 However, accumulating evidence suggests

that perceptual decisions are also significantly affected by latent

subjective states reflecting task engagement.8 For instance,

behavioral response variability is correlated with mind wandering

in humans9 and fluctuations of physiological and behavioral states

in animals.10–13 These subjective state drifts could be partially

attributed to cortical activity fluctuation.13–15 The synchronization

and desynchronization of many neurons in particular areas of the

cortex could affect the efficiency of population coding.16,17

Accordingly, shared response variability in pairs of sensory neu-

rons (i.e., noise correlation), modulated by attention, arousal, and

reward expectation, can affect efficient codingof stimulus features

and sensory processing, resulting in behavioral variability in a sen-

sory detection task. Moreover, task engagement is known to be

modulated by the trial-by-trial experience of decision making and

varyingoutcomes,18–24 in turn regulatedbydistinct neuron popula-

tions in association areas.25–27 Furthermore, some studies have

suggested that neurons that do not explicitly respond to a stimulus

contribute to texture discrimination in the somatosensory cortex,28

workingmemory coding in the prefrontal cortex,29 stimulus/choice

coding in the auditory cortex,30 and category representation in the

prefrontal cortex.30 These studies highlight the potential contribu-

tion of non-sensory neurons to modulating sensory processing.

However, how non-sensory neurons coordinate with sensory neu-

rons to optimize sensory decisions is yet unknown.

Numerous studies have revealed that neuronal activity in the

primary visual cortex (V1) and posterior parietal cortex (PPC)

plays a crucial role in visual detection.31,32 Patients with V1 le-

sions reported subjective blindness,33,34 and direct optogenetic

inhibition of rodent V1 impaired visual detection behavior.35 On

the other hand, the PPC is known to play essential roles in
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selective attention and reward-history bias27,36 and regulates the

response properties of V1 neurons.37–39 Recent imaging studies

have examined visual perceptual behavior during a go or no-go

detection task and found that task requirements40 heavily modu-

late visual responses in the PPC and that heterogeneous

recruitment of V1 neurons plays an important role in visual detec-

tion.40,41 Together, these studies support the notion that the V1

and PPC create distinct cortical states at the population level

that integrate task-relevant external signals42 with internal states

for subjective detection performance.

Although neuronal imaging studies addressed population

coding of sensory processing across different cortical areas,

the go or no-go task paradigm, often used in experiments with

head-fixed animals, is susceptible to subjective biases: go trials

may contain false alarms and no-go trials may contain misses43

due to fluctuating internal states, as described above. To further

classify such internal states during visual detection, we previ-

ously developed a spatial-visual cue detection task for free-mov-

ing rats.1 The task combines a two-alternative spatial choicewith

a third option for no stimulus, which allowed us to isolate the hit

trials less contaminated with false alarms. Furthermore, we uti-

lize a shutter for the central port that enables us to force rats to

make spatial choices, even when they initially chose the central

port. It separates the miss responses into two distinct cate-

gories: ‘‘missed responses with the capability to choose the cor-

rect side when forced (Miss+)’’ and ‘‘missed responses without

the capability to choose the correct side when forced (Miss�).’’

This allows us to uniquely interrogate how visual information in

the visual cortex fails to drive correct choice behaviors by

comparing ‘‘self-driven correct choice’’ and Miss+ conditions.

By taking advantage of these relatively homogeneous trials

with different behavioral responses to identical stimuli, we aimed

to reveal the neural mechanisms underlying variable visual

detection performance due to subjective biases. We recorded

neuronal activity simultaneously from V1 and PPC to test how

sensory and non-sensory neurons (hereafter defined as ‘‘stim-

ulus non-preferring neurons’’) in these cortical areas differently

contribute to the population-level computation for visually

guided decisions.

RESULTS

Rats performed visual detection task based on their
internal threshold
We trained seven rats to perform a spatial visual-cue detection

task (Figures 1A–1C), which is essentially a three-alternative

choice design that encourages animals to report the presence

or absence of peripheral visual stimuli as described in our previ-

ous study.1 Briefly, the rats initiated a trial by poking their nose at

the central port. They were rewarded by choosing outer ports

(left or right) when a visual stimulus was presented or by keeping

the nose in the central port when no peripheral stimulus was pre-

sented. In half of the trials, the central port was closed 0.5 s after

stimulus presentation to force animals to choose one of the outer

ports.

To confirm whether rats had a steady choice criterion, we

alternated probe sessions with graded stimulus strength (ses-

sion A) and neuronal recording sessions with a constant near-

threshold stimulus strength (session B). In session A, consistent

with our previous study,1 the peripheral choice accuracy in

forced-choice (FC) trials decreased from approximately 80%

to 65% as visual contrast decreased (Figures 1D, orange, and

S1A), and the accuracy was maintained at >90% regardless of

visual contrast in the three-choice (3C) trials (Figures 1D, blue,

and S1A). Note that trials where rats chose to stay in the central

port were excluded from calculating spatial choice accuracy in

3C trials. Rats missed the visual stimuli more often (from 50%

to 70%) as visual contrast decreased (Figures 1E, S1B, and

S1E). They also showed >90% correct rejection performance

when the visual stimulus was omitted in 3C trials (Figures 1F,

S1C, and S1E). These results confirmed that rats have a gener-

alized strategy to choose the outer ports in response to periph-

eral stimuli only when their choice criterion is met. In addition,

rats showed correct choices above the chance level when the

shutter forced them to select one of the outer ports after first

choosing to stay in the central port (Figures 1G, gray, and

S1D). Thus, the rats received visual information but did not al-

ways maximally exploit it. We labeled trials with different choice

types as hit correct (Hit+), hit incorrect (Hit�), miss correct

(Miss+), and miss incorrect (Miss�) according to choice perfor-

mance (Figures 1A and 1B).

To determine what drove the rat’s choice, we applied a gener-

alized linear model (GLM) analysis to the behavioral data. We

used multiple variables, such as current stimulus, previous

reward positions, and previous failure (unrewarded), as indepen-

dent variables and predicted spatial choice direction and go or

no-go responses to left and right stimuli (Figures 1H and S1F,

respectively). We compared regression coefficients and uniquely

explained variance by the variable (STARMethods). Note that in-

dividual delta-R2 does not add to the total R2 because some of

the variance can be explained bymultiple factors. In the Hit trials,

the majority of the spatial choice variance (67%) was accounted

by the stimulus direction alone with minimal contributions (2%)

from previous reward positions (Figure 1H). In contrast, although

the total explained variance was much lower (�30%) in the Miss

trials, previous reward positions had a stronger effect on spatial

choice (6%; Figure 1H). We also confirmed mild contributions

(about 10%) of previous reward positions in go or no-go deci-

sions (Figure S1F). Together, spatial choices in the hit trials

were predominantly driven by visual information with little influ-

ence of previous reward positions, although spatial choices in

the miss trials were partially influenced by the incongruent previ-

ous reward positions to the stimuli.

Stimulus-preferring neurons in V1 and PPC were
activated regardless of choice types
We recorded neurons simultaneously from the right V1

(NV1 = 515 neurons) and right PPC (NPPC = 436 neurons) using

chronic tetrode implants during task performance (Figure S3E).

To investigate how visual neuronal responses contribute to

behavioral responses, we first identified stimulus-preferring neu-

rons using time-locked kernel regression analysis with multiple

task predictors, such as contra- and ipsi-lateral stimuli, motor

preparation, and choice-preparation kernels (Figures 2A and

S3A–S3C; STAR Methods). Approximately 30%–40% of the

neurons were defined as selective to visual stimulus in V1

(40%; N = 203) and PPC (27%; N = 116; Figures 2B–2D and

S3C). Based on the results, we classified the neurons as
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enhanced-type stimulus-preferring neurons and suppressed-

type stimulus-preferring neurons and the remainder as stimulus

non-preferring neurons. These subpopulations consisted of

heterogeneous neurons with different selectivity (Figure 2D)

and different spatial distribution (Figure S3F). Importantly, both

V1 and PPC neurons showed stimulus-dependent activity

A B

C
H

D E F G

Figure 1. Spatial visual-cue detection task

(A and B) Schematics of the behavioral paradigm. Rats initiated a trial by nose poking into the central port andwaited for 0.2–0.6 s to receive a peripheral stimulus.

Rats were rewarded by poking into the corresponding port when the peripheral stimulus was presented (A) or into the central port when the stimulus was not

presented (B).

(C) Task timeline. Rats were free to choose as soon as the spatial stimulus was presented. When they kept poking their nose into the central port over 0.5–1.0 s, it

was judged as a central choice. In forced-choice trials, a spontaneous left or right choice was defined as a ‘‘hit,’’ although failure to respond within 500 ms was

defined as a ‘‘miss.’’

(D) Spatial choice accuracy in 3C and FC trials with graded visual contrast in session A and a fixed contrast in session B.

(E) Miss rate in 3C trials.

(F) Correct rejection rate in 3C trials.

(G) Spatial choice accuracy before and after shutter closure in FC trials.

(H) Impact of task parameters on behavioral variability using GLM fitting to left or right choice in hit andmiss conditions. Model coefficients in the left panel and the

DR2 in the right panel are shown.

(D–H) Error bars show SEM. See also Figures S1 and S2.

ll
OPEN ACCESS

Current Biology 31, 1–13, June 21, 2021 3

Please cite this article in press as: Osako et al., Contribution of non-sensory neurons in visual cortical areas to visually guided decisions in the rat,
Current Biology (2021), https://doi.org/10.1016/j.cub.2021.03.099

Article



(enhanced and suppressed from pre-stimulus baseline), regard-

less of choice types (Figures 2C and S3D). Furthermore, the

stimulus non-preferring neurons in both V1 and PPC did not

show apparent differences in the average temporal dynamics

among choice types until 0.2 s after stimulus presentation, where

behavioral responses occurred (Figure 2C).

To further clarify whether the presence of visual information in

V1 and PPC is important for hit and miss behaviors, we conduct-

ed a population-decoding analysis of the stimulus (presence or

absence). We found that the stimulus-preferring population de-

coded stimulus presence near perfectly in the Hit+ andMiss+ tri-

als (Figure 2E), demonstrating the robust presence of visual

information both in the Miss+ and Hit+ trials. This also indicated

that the stimulus period’s activity was evoked by a visual stim-

ulus, but not by stimulus expectations. We also confirmed that

the stimulus non-preferring population could not predict the

stimulus presence or absence even as an ensembled activity

(Figures 2E and S3G). Furthermore, the classification accuracy

for the Miss� trials was relatively high (�80%) in V1 but was at

chance level in PPC, indicating that the visual information in

PPC was not as robust as V1 in the Miss� trials. These results

indicate that, in contrast to the Miss� trials, the lack of go re-

sponses in the Miss+ trials is not explained by the robustness

of visual information in the visual cortex.

A B

C D

E

Figure 2. Quantification of neuronal responses to the task and behavioral variables in V1 and PPC neurons

(A) Schematic of the encodingmodel fitted to the neuronal responses to the task and behavioral variables (STARMethods). Inset: real (green) and predicted (blue)

firing rates in each cross-validated dataset are shown. Each vertical line indicates stimulus onset timing.

(B) Fraction of neurons encoding each task and behavioral variable in V1 (red) and PPC (blue). Inset: fraction of stimulus-preferring and non-preferring neurons in

V1 and PPC is shown.

(C) Trial-averaged neuronal activity for each choice outcome in enhanced-type stimulus-preferring neurons (128 V1/74 PPC neurons), suppressed-type stimulus-

preferring neurons (75 V1/42 PPC neurons), and stimulus non-preferring neurons (312 V1/320 PPC neurons). Firing rates of all neurons were Z scored and sorted

by max peak latency in Hit+ trials. Shaded area shows SEM.

(D) Preferences of each neuron in V1 and PPC for task and behavioral variables (ordered within stimulus-preferring and non-preferring neurons).

(E) Classification accuracy of predicting the presence of a contralateral stimulus versus the absence of a stimulus in each choice outcome in stimulus-preferring

and non-preferring population in V1 (top) and PPC (bottom). Error bars show standard deviation (SD).

See also Figure S3.
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Significant contributions of non-sensory neurons in V1
and PPC for separating different choice types as
population activity
So far, we found no significant differences in neural activities

in the Hit+ and Miss+ trials. Next, we wanted to address

whether neuronal population states differentiate choice types

(hereafter only referred to as Hit+ and Miss+ trials). To this

end, principal component analysis (PCA) was applied to a

population data consisting of trial-averaged choice-type

neuronal activities ranging from �0.1 to 0.15 s after stimulus

onset (see STAR Methods for details). The PCA finds the

axes optimized to capture the variance of neuronal activity

across choice types and time. We identified three dimensions

that captured 73% of the total variance for the whole popula-

tion in both V1 and PPC (Figure S4A). The reconstructed pop-

ulation activities from those three PCs have distinct dynamics

between the Hit+ and Miss+ trials in V1 and PPC (3D plots in

Figure 3A and individual PCs in Figures 3B, 3C, and S4B). We

found a significant separation between choice types in the

analysis window in both V1 and PPC (Figures 3D and S4C),

suggesting that separation of the Hit+ and Miss+ responses

is the result of the coordinated activity of many neurons. The

difference of neuronal activities between the Hit+ and Miss+

trials up to 0.15 s after stimulus onset is not likely to be related

to behavioral differences between Hit+ and Miss+ conditions

because trials with reaction time <0.2 s were not included in

the analysis (STAR Methods). On the other hand, the activity

difference between Hit+ and Miss+ trials before 0.15 s after

stimulus onset should reflect the difference in internal states

for driving spontaneous choices in response to visual stimuli,

given that rats can elicit correct spatial choices in both choice

types.

Interestingly, V1 and PPC population activities shared

similar PCs that may reflect neural activities to different task

events and background fluctuations. For instance, PC1 shows

distinct dynamics peaking around 100 ms after the onset of vi-

sual stimuli (Figures 3B and 3C). In both V1 and PPC, PC1

discriminated Hit+ and Miss+, although the time course of

this effect’s significance varied slightly between the two brain

regions. PC2 sustained the separation of choice type informa-

tion robustly before stimulus onset (Figures 3B and 3C). PC3

(Figures 3B and 3C) and others (Figure S4B) show oscilla-

tory-like components with different frequencies, in which the

phase separates choice types, suggesting a relative timing

of global fluctuations across V1 and PPC to stimulus onset

provides a significant influence on choice types. However,

none of these components are dominated by neurons with

particular selectivity (Figure 3E), except for the PC1 for PPC,

dominated by stimulus-preferring neurons. In both V1 and

PPC, we further confirmed a robust separative population-

level activity between choice types in the stimulus non-prefer-

ring population in V1 and PPC (Figures 3F, 3H, S4A, and S4B).

Other than the presence of visual-response-like components

in stimulus-preferring populations, major PCs were qualita-

tively similar between stimulus-preferring and stimulus non-

preferring populations (Figure S4B). These results indicate

that Hit+ and Miss+ responses are mediated by multiple pro-

cessing levels from a variety of neurons, including stimulus

non-preferring neurons.

Decomposing population dynamics showed distinct
state dynamics across choice types
The results above suggest the importance of non-sensory activ-

ities for separating choice types, but the association between the

different task events and the population-level components is not

clear. In particular, though we identified PC1 as a visual-

response-like component in both V1 and PPC, it is still unclear

whether other components are orthogonal to the visual-stim-

ulus-evoked activity because the PC1 is a mixture of various

neurons, including stimulus non-preferring neurons (Figure 3E),

and may contain the non-stimulus factors (e.g., brain state). To

further distinguish the source of non-sensory activities, we

generated a neural state space spanned by orthogonalized

axes that capture the population activities related to stimulus

presence, internal states, decisions, and movement (Figure 4A;

STAR Methods). We defined a ‘‘stimulus axis’’ by computing

the maximally separated activity between stimulus-present and

stimulus-absent trials during stimulus window (0–0.15 s from

stimulus onset), a ‘‘state axis’’ of activity by computing the maxi-

mally separated activities between the Hit+ and Miss+ trials dur-

ing the pre-stimulus window (�0.5 to 0 s from stimulus onset), a

‘‘decision axis’’ of activity by computing themaximally separated

activities between the Hit+ and Miss+ trials during the stimulus

window (0–0.15 s from stimulus onset), and a ‘‘movement

axis’’ by computing the maximally separated activity between

the Hit+ and Miss+ trials during movement window (0.3–0.5 s

from stimulus onset; Figures 4B and S2). Though the selection

of the analysis windows is arbitrary, we wanted to address

whether and how distinct population dynamics associated with

different events can separate choice types beyond the analysis

window. We projected the population activities from the Hit+

and Miss+ trials onto each axis, which captured 25%/21%,

66%/51%, 16%/15%, and 26%/30% explained variance in the

state, movement, stimulus, and decision axes in V1 and PPC,

respectively (Figure 4C). We validated the separations of projec-

tions between the Hit+ and Miss+ trials using independent trials

Figure 3. Pre-stimulus population dynamics and stimulus subspaces in V1 and PPC

(A) Population responses of the whole population projected onto three dimensions of the analysis window (�0.1 to 0.15 s from stimulus onset) in V1 and PPC.

Each color corresponds to time relative to stimulus onset.

(B and C) Mean projection of neural activity onto each principal component. Each plot is shown as a mean ± 95% confidence interval. Gray lines above each

projection are significantly different across choice types.

(D) Sensitivity index (d’) across choice types in the different time windows for V1 and PPC. The black line indicates real data and the thin line shuffled data.

(E) Absolute weight value in each PC shown as mean ± SEM.

(F and H) Population dynamics of stimulus-preferring and non-preferring population projected onto three dimensions of the analysis window (�0.1 to 0.15 s from

stimulus onset) in V1 and PPC.

(G and I) Same as in (D) but calculated from stimulus-preferring and non-preferring populations.

See also Figure S4.
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from train sets (STAR Methods; p < 0.05; Figure 4D). We found

that the population activities projected onto the pre-stimulus

state axis segregated choice types as sustained dynamics

beyond stimulus onset in both V1 and PPC, whereas those pro-

jected onto the decision axis showed only minor differences. On

the other hand, the population activities projected onto the

movement axis were largely contained within movement epoch

(0.3 s after stimulus onset) without affecting stimulus epoch.

Finally, we found that, consistent with decoding analysis, the

stimulus-evoked population activities did not segregate choice

types, at least before movement onset (<0.2 s; Figure 2E). As

expected, control analysis with randomly generated data did

not show such robust and unique population dynamics (Fig-

ure S4D). These results suggest distinct population dynamics

orthogonally embedded to stimulus-evoked activities for sepa-

rating choice types in both V1 and PPC.

The population representation of choice types is
distributed across heterogeneous individual neurons
The analysis so far revealed that choice types can be discrimi-

nated with trial-averaged neuronal dynamics, but we wanted to

examine whether that was the case on a single-trial basis. To

A

D

B C

Figure 4. State dynamics regulation in V1 and PPC

(A) Population dynamics encode the two task-related variables (e.g., state and stimulus) within the two-dimensional neuronal subspace.

(B) Schematic of the definition of state, movement, stimulus, and cue-relatedmodes. The stimulusmodewas computed from stimulus presence or absence trials,

and the other modes from Hit+ and Miss+ trials in each task epoch.

(C) Explained variance of each neuronal mode in original population dynamics in V1 and PPC. Note that the sign of the projections is arbitrary. The distance of

projections is shown for comparison between V1 and PPC.

(D) Neuronal projections in each mode individually in V1 and PPC. Right panels in each V1 and PPC show the distance between projections in Hit+ and Miss+

trials. Shaded area shows the SD.

See also Figure S4.
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this end, we applied a linear support vector machine (SVM) algo-

rithm to predict the choice types (Hit+ andMiss+) of trials at each

time point in V1 andPPCpopulations (Figure 5A). Comparedwith

trial-label-shuffled control, we found significant improvements in

the Hit+ and Miss+ classification at the time points during pre-

stimulus, stimulus, and post-stimulus epochs. Note that the clas-

sification improvement in post-stimulus epoch (0.2–0.5 s from

stimulus onset) simply reflects differences in behavior between

the Hit+ and Miss+ trials (Figures 1C and S2). Next, we per-

formed the same analysis dividing the population into stimulus-

preferring and non-preferring neuronal subpopulations in V1

and PPC (Figure 5B). Improved classification in the pre-stimulus

period was observed in the non-preferring population in both V1

and PPC and stimulus-preferring neurons in PPC (Figures 5B

and 5C). The non-preferring population showed a significant

classification improvement in both epochs in V1 and PPC

(Figure 5C), whereas the stimulus-preferring population did not

show a robust improved classification during stimulus epoch in

the PPC. These results confirmed the robust contributions of

the non-preferring population for separating choice types even

on a trial basis throughout different time points prior to move-

ment. Analysis of single neuronal contributions to the population

decoder suggests widely distributed contributions of different

neuron types in separating choice types during both pre-stim-

ulus and stimulus epochs (Figure 5D). However, we also found

biased contributions of neuron types depending on task epochs

and areas: in the pre-stimulus epoch, the previous contralateral-

reward-preferring neurons significantly contributed to choice-

type coding compared to the stimulus-preferring neurons in

PPC (Figure 5D; p < 0.05; one-way ANOVA followed by least sig-

nificant difference [LSD] multiple comparisons), although, dur-

ing-stimulus epoch, stimulus-preferring neurons contributed to

A C

DB

Figure 5. Predictability of distinct choice type in V1 and PPC

(A) Classification improvement (real � shuffled classification accuracy) of classifiers trained by all neurons in V1 (left) and PPC (right) in each time bin. The

classifiers were independently trained in each time bin. Shaded area shows SD.

(B) Same as in (A), but each classifier trained by stimulus-preferring (left) or non-preferring neurons (right) in V1 (top) and PPC (bottom).

(C) Classification improvement in pre-stimulus epoch (�0.2 to 0 s from stimulus onset) and during stimulus (0–0.15 s from stimulus onset) for each population type.

Error bars show SD. *p < 0.05; mean � 2SD > 0.

(D) Absolute weight value for different neurons types in classifiers trained on all neurons for each epoch. Neuron types were defined based on GLM analysis as

depicted in Figures 2B and 2D except that the non-sensory neurons (e.g., prev. outcome, movement, etc.) here did not include stimulus neurons (ipsi and contra).

Only neuron types with >5% of the total number of neurons are displayed. Data represent mean ± SEM. *p < 0.05; one-way ANOVA followed by post hoc LSD

tests.

See also Figure S5.
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the coding compared with the previous ipsi-reward-preferring

neurons in V1 (Figure 5D; p < 0.05; one-way ANOVA followed

by LSD multiple comparisons).

We next asked whether the population computation for choice

types dynamically changed or was stable over time. A cross-

temporal classification analysis was performed to probe the sta-

bility of neuronal population computation (Figures S5A and S5B).

As expected, the highest stability of classifiers was found around

the time where the behavioral differences between Hit+ and

Miss+ trials occurred (0.2–0.5 s after stimulus onset). Other

than that, pre-stimulus classifiers were relatively stable at least

until 0.1 s from stimulus onset in all neurons and stimulus non-

preferring neurons in PPC, whereas the stimulus-preferring pop-

ulation showed less stability in the cross-temporal classification

(Figure S5B). To estimate the stability of neuron contributions for

the classification of choice types across time, we calculated

Pearson’s correlation coefficients of neuronal weights of pairs

of classifiers at different times (Figures S5C and S5D). If the pop-

ulation computation is similar across time, the correlation coeffi-

cients will be tolerant to decaying. For a comparison between

whole populations in V1 and PPC (Figure S5D, top; p < 0.01;

Kruskal-Wallis test), V1 was relatively dynamic compared to

PPC. Such a dynamic population computation was, in particular,

evident in both stimulus-preferring and non-preferring neurons in

V1 (Figure S5D, below), whereas the stability was relatively

higher in non-preferring populations in the PPC than elsewhere

(Figure S5D, below; p < 0.05; the Kruskal-Wallis test followed

by post hoc Tukey’s tests for comparison). Together, these re-

sults suggest that choice information was stable over time, espe-

cially in stimulus non-preferring neurons, although population

computation is dynamic, especially in V1.

V1 noise correlation increased in forced detection
performance before and after stimulus presentation
Thus far, our results demonstrate that non-preferring neurons

encode choice types in V1 and PPC. However, in these analyses,

we used a ‘‘pseudo-population’’ that combined neuronal activity

recorded in different trials. Therefore, our analysis did not

consider the correlation structure of pairs of simultaneously re-

corded neurons within each trial (i.e., noise correlation). If the

noise is closer to random across neurons (low noise correlation),

information coding can be more reliable and efficient44 (but see

Moreno-Bote et al.45). We first examined classification accuracy

in each session using a simultaneously recorded population.

Both V1 and PPC populations showed a significantly higher clas-

sification than shuffled data (Figure 6A; p < 0.001 in V1 and PPC).

Next, we compared classification accuracy with a de-correlated

population where each neuron in the same session was

randomly selected from different trials within the same choice

type (STAR Methods). Thus, the de-correlated population main-

tains the signal correlation while removing the noise correlation.

Both V1 and PPC populations had significantly decreased clas-

sification accuracy in the de-correlated population (Figure 6B),

indicating that the correlation structure was crucial for popula-

tion computation.

To investigate the correlation structure in choice types, we

calculated pairwise noise correlations separately for Hit+ and

Miss+ conditions at each time bin (STAR Methods; Figure 6C).

We found that noise correlation in Miss+ trials increased in

pre-stimulus epoch and during stimulus epoch compared to

Hit+ trials in V1 neuron pairs, although PPC neuron pairs did

not differ in choice types (Figure 6C). Such a difference in noise

correlation was mostly apparent in neuron pairs among regular-

spiking neurons (Figure S6C). We next asked whether reduced

noise correlation is associated with pairs of neuronal types

(i.e., stimulus-preferring and non-preferring neurons). The

increased noise correlation in Miss+ trials was most evident in

pairwise interactions between stimulus preferring and non-

preferring neurons and non-preferring and non-preferring

neurons, especially during pre-stimulus epoch (Figure 6D).

These results suggest that neuronal coupling associated with

stimulus non-preferring neurons in V1 plays an important role

in separating choice types.

DISCUSSION

It is widely believed that the fidelity of visual responses in sensory

neurons explains the trial-by-trial variance of visual detection

performance. Our results demonstrated significant contributions

of non-sensory neurons in V1 and PPC to reliable visual detec-

tion performance. The near-threshold stimuli used in our task

induced trial-by-trial variability in visual detection performance,

and we further classified those trials with identical stimuli into

three choice types, which were not differentiated in previous

studies. Surprisingly, the Hit+ and Miss+ trials showed no differ-

ences in population encoding of stimulus as well as mean tem-

poral dynamics (Figures 2C and S3D, right). Instead, we found

multiple lines of evidence for population-level computation

contributing to the optimal behavioral responses to visual stimuli

(Hit+ and Miss+) in V1 and PPC. First, we found a specific diver-

gence between choice types at multiple levels of population

activity, particularly with the robust contribution from stimulus

non-preferring neurons in both V1 and PPC, which is orthogo-

nally embedded to stimulus response dynamics (Figures 3 and

4). Second, during pre-stimulus and stimulus epochs, the choice

types were decoded on a single-trial basis with contributions of a

variety of neurons with different selectivity in both V1 and PPC

(Figure 5). Third, V1 neuron pairs, but not PPC, showed

increased noise correlation in the Miss+ trials compared to the

Hit+ trials before and during visual stimulus presentation, which

was most evident in pairwise interactions between non-prefer-

ring neurons and others (Figures 6C and 6D).

It has been postulated that stochastic behavioral responses to

identical sensory stimuli are generated by fluctuations of back-

ground neuronal ensembles preceding external inputs.46 A

recent study further demonstrated that a global slow oscillation

correlates with the level of task engagement measured by miss

rates.47 Our unsupervised analysis revealed at least three major

distinct population dynamics in V1 and PPC, respectively (Fig-

ure 3). First, we found temporal dynamics coinciding with the vi-

sual response peak in both V1 and PPC. Second, we found sus-

tained dynamics, which significantly contributed to separating

the choice types well before stimulus onset (Figures 3 and

S4B). The choice typewas orthogonally represented to the visual

response dynamics with involvement of non-sensory neurons

(Figures 3 and 4). Third, we found that oscillatory components,

which were prominent in both stimulus-preferring and non-

preferring neurons of both V1 and PPC, were significant factors
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to differentiate choice types (Figures 3 and S4B). Accordingly,

we have two non-exclusive hypotheses on how stimulus non-

preferring neurons can influence this process.

First, the extent of local interactions between stimulus non-

preferring neurons and stimulus-preferring neurons may

determine the deviation of choice between optimal (hit) and

conservative (miss). Although our state space analyses (Figures

3 and 4) suggest that visual responses within stimulus-prefer-

ring population are orthogonally represented with the state sig-

nals, the mixed population of stimulus-preferring and non-

preferring neurons in V1 represented visual responses with

coherent modulation by state signals (PC1; Figure 3), suggest-

ing significant interactions between stimulus-preferring and

non-preferring neurons on a trial-by-trial basis that affect hit

or miss behavior. Supporting this hypothesis, we found that

the correlation structure among simultaneously recorded neu-

rons around the stimulus presentation time can contribute to

the separation of choice types (Figure 6B). Furthermore, we

found an increased noise correlation in theMiss+ trials between

stimulus non-preferring and others (Figures 6C and 6D), sug-

gesting that the relative timing of the visual stimulus with

respect to the ongoing interactions among these neurons af-

fects visual processing, resulting in biased decisions (i.e.,

Miss+ trials). Thus, we suggest proper interaction between

stimulus-preferring and non-preferring neurons on a trial-by-

trial basis underlies the optimal exploitation of visual informa-

tion for behavior. However, we note that increased noise corre-

lation is not necessarily harmful for information coding.45,48

Future studies will address whether and how downstream

cortical areas exploit the integrated information for behavior.

Second, global oscillatory activities, including stimulus non-

preferring neurons, support visual information transmission to

downstream cortical areas. We observed various subtle oscilla-

tory components, where the phase separated the choice types

relative to the stimulus onset, suggesting that visual inputs can

be efficiently exploited for behavior when the ongoing fluctuation

is in a particular phase. The finding is consistent with previous

studies that proposed that sensory information is gated by

ongoing neural activities.46,49–51 However, we did not obtain

direct evidence that local field potential (LFP) corresponds to

those spike oscillations. It is possible that LFP oscillation and

spike oscillation from a particular subpopulation can be

controlled differently. For instance, a recent study suggested

that non-sensory-tuned fast-spiking neurons originate cortical

rhythmicity, resulting in the direct influence on sensory informa-

tion coding in the primary somatosensory cortex.51 Future work

A B C

D

Figure 6. Noise correlation in Miss+ trials increased around stimulus presentation in V1

(A) Classification accuracy for real and shuffled populations in each session in V1 and PPC. ***p < 0.001 in V1; paired t test.

(B) Classification accuracy for the real and de-correlated population in each session in V1 and PPC. **p < 0.01; ***p < 0.001; paired t test.

(C) Mean noise correlation in each time epoch in V1 and PPC. The error bars show SEM. *p < 0.05; **p < 0.01; t test.

(D) Mean noise correlation in each time epoch with different neuron type combinations in V1 and PC. *p < 0.05; paired t test.

See also Figure S6.
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will address the possibility that supports the local networkmech-

anism and directionality of information flow between stimulus-

preferring and non-preferring neuronal coupling.

The relatively weak contribution of visually evoked activities in

V1 and PPC population coding could be a unique feature of our

task design because animals had a third option, of which expe-

rienced reward value may suppress peripheral choices, even

when the animals recognize the stimuli. It should be noted that

ignoring the presence of stimuli is never rewarded in our task

and, thus, is clearly suboptimal bias behavior. In addition, our

data show that rewards in the previous trials only partially (about

10%) explain the behavioral variance in hit or miss choices (Fig-

ure S1F) as well as the variance of population neural coding in V1

and PPC (Figure 5D). Therefore, we conclude that the previous

rewards cannot solely explain the recruitment of non-sensory

neurons in V1 and PPC. On the other hand, it is possible that

task-irrelevant movements during task performance could

have affected hit responses due to suboptimal head and body

positions.52,53 However, such behavioral misalignment does

not explain the increased noise correlation in V1. This suggests

that, at least, the accurate performance in hit trials is due to an

intrinsic population-level mechanism that can be related to sen-

sory-motor transformation during the task,40 while highlighting

the non-trivial contribution of non-sensory neurons in the

process. Although previous studies indicated the significant

contributions of non-sensory neurons to perceptual decision

making,28–30,54 most of them employed sensory categorization

tasks in the forced-choice paradigm, which unavoidably suffers

from stimulus uncertainty causing subjective biases due to

value-based decisions. Our data support and extend these find-

ings by showing that, even in the simplest sensory detection

task, lacking inherent stimulus uncertainty and being less

contaminated by value-based decisions, non-sensory neurons

in V1 and PPC play a significant role in sensory decisions at

the population level.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the Lead Contact, YumaOsako (dddb1003@mail4.doshisha.ac.

jp) or Junya Hirokawa (jhirokaw@mail.doshisha.ac.jp).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The electrophysiological data during behavioral task generated in this study have been deposited onMendeley Data: https://doi.org/

10.17632/wxcpcb47pv.1. The code for the time-locked kernel regression is available on GitHub (https://github.com/YumaOsako/

EncodingModel). All other code is available upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Seven male Long-Evans rats (Shimizu Laboratory Supplies, Kyoto, Japan) weighing 200-268 g at the beginning of training were indi-

vidually housed and maintained on a laboratory light/dark cycle (lights on 8:00 A.M. to 9:00 P.M.). Rats were placed on water restric-

tion with ad libitum access to food. The animals were maintained at 80% of their baseline weight throughout the experiments. All

experiments were implemented in accordance with the guidelines for the care and use of laboratory animals provided by the Animal

Research Committee of Doshisha University.

Surgery
Rats were anesthetized with 2.5% isoflurane before surgery, and anesthesia maintained throughout surgical procedures. We moni-

tored body movements and hind leg reflex and adjusted the depth of anesthesia as needed. An eye ointment was used to keep the

eyes moistened throughout the surgery. Subcutaneous scalp injection of a lidocaine 1% solution provided local anesthesia before

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Isoflurane Wakenyaku, Kyoto, Japan N/A
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Deposited data

Data deposited at Mendeley Data This paper https://doi.org/10.17632/wxcpcb47pv.1

Experimental models: organisms/strains

Long-Evans Hooded Rat Shimizu Laboratory Supplies,

Kyoto, Japan

N/A

Software and algorithms

MATLAB MathWorks Version 2020a

Glmnet in MATLAB Qian, J., Hastie, T., Friedman, J.,

Tibshirani, R., and Simon, N.

https://web.stanford.edu/�hastie/glmnet_matlab/

Time-locked kernel regression analysis This paper https://github.com/YumaOsako/EncodingModel

Spike sorting MClust http://redishlab.neuroscience.umn.edu/

MClust/MClust.html

PulsePal and Bpod J. Sanders and A. Kepecs. https://www.sanworks.io/index.php

Arduino N/A https://www.arduino.cc/

Other

Open Ephys Acquisition Board Open Ephys https://open-ephys.org/acq-board

3D printing (for microdrive) DMM.make https://make.dmm.com/print/

ll
OPEN ACCESS

e1 Current Biology 31, 1–13.e1–e6, June 21, 2021

Please cite this article in press as: Osako et al., Contribution of non-sensory neurons in visual cortical areas to visually guided decisions in the rat,
Current Biology (2021), https://doi.org/10.1016/j.cub.2021.03.099

Article

mailto:dddb1003@mail4.doshisha.ac.jp
mailto:dddb1003@mail4.doshisha.ac.jp
mailto:jhirokaw@mail.doshisha.ac.jp
https://doi.org/10.17632/wxcpcb47pv.1
https://doi.org/10.17632/wxcpcb47pv.1
https://github.com/YumaOsako/EncodingModel
https://github.com/YumaOsako/EncodingModel
https://doi.org/10.17632/wxcpcb47pv.1
https://web.stanford.edu/%7Ehastie/glmnet_matlab/
https://web.stanford.edu/%7Ehastie/glmnet_matlab/
https://github.com/YumaOsako/EncodingModel
http://redishlab.neuroscience.umn.edu/MClust/MClust.html
http://redishlab.neuroscience.umn.edu/MClust/MClust.html
https://www.sanworks.io/index.php
https://www.arduino.cc/
https://open-ephys.org/acq-board
https://make.dmm.com/print/


the incision. A craniotomy was performed over the anterior part of the right V1 (AP �6.36 to �7.32 mm, ML 3.2 mm relative to the

bregma, 0.2 to 0.4 mmbelow the brain surface), and right PPC (AP�3.8mm,ML: 2.5 mm relative to the bregma, 0.2 to 0.4mmbelow

the brain surface), and a custom-designed electrode was vertically implanted using a stereotactic manipulator. A stainless-steel

screw was placed over the cerebellum and served as ground during recordings. The mean response of all electrodes was used

as a reference. During a week of postsurgical recovery, we gradually lowered the tetrodes to detect unit activities in the V1 and

PPC. Electrode placement was estimated based on depth and was histologically confirmed at the end of experiments.

Histology
Once the experiments were completed, the rats were deeply anesthetized with sodium pentobarbital and then transcardially

perfused with phosphate-buffered saline and 4% paraformaldehyde. The brains were removed and post-fixed in 4% paraformalde-

hyde, and 100 mm coronal brain sections were prepared to confirm the recording sites (Figure S3E).

METHOD DETAILS

Behavioral apparatus
The behavioral apparatus (Figures 1A–1C) has been previously described.1,55 An operant chamber (O’Hara, Tokyo, Japan) with three

ports in the front wall for nose-poke responses was enclosed in a soundproof box (Brain Science Idea, Osaka, Japan). Each port was

equipped with an infrared sensor to detect the animals’ nose-poke responses. Visual cues were presented using white light-emitting

diodes (LEDs) (4000mcd; RS Components, Yokohama, Japan) placed on the left and right walls of the operant chamber, as shown in

Figure 1. Water rewards were delivered from gravity-fed reservoirs regulated by solenoid valves (The Lee Company, Westbrook, CT)

through stainless tubes placed inside the central, left and right target ports. Stimulus and reward deliveries were controlled with Pulse

Pal56 and behavioral responses measured using Bpod (Sanworks, Stony Brook, NY).

Visual cue detection task
The visual cue detection task design was previously described.1 The task consisted of randomly interleaved three-choice (3C) and

forced-choice (FC) trials with equal probabilities in a session. The only difference between trial types was that in FC trials, the cen-

tral port was closed with the shutter door to prevent the rat from continuing to the central nose poke (Figures 1A–1C). After a fixed

3 s inter-trial interval (ITI), the central port was illuminated by an interior LED, signaling the ready state of trial initiation. The rats

initiated each trial by making nose pokes into the central port. After a 0.2�0.6 s random stimulus delay, the visual stimulus was

presented from the left or right side for a duration of 0.2 s. Rats were allowed to make a choice response after the end of the stim-

ulus delay period. Trials in which animals prematurely left the port before stimulus delay were canceled and trials re-initiated. We

randomly provided one of three levels of visual brightness (difficult, medium, and easy) for each trial by modulating the voltage

between 0.02�5.1 lux in session A. Difficult and easy stimuli were selected for all subjects based on the minimum and maximum

LED voltage dynamic range. Medium stimuli were chosen for each subject such that the subject detected stimuli with medium

accuracy between easy and difficult stimuli in forced-choice trials. The probabilities for left, right, or no visual stimulus were equal

(33% per condition) in 3C and FC trials. The reward was given if rats chose the same side where the visual stimuli were emitted in

3C and FC trials. If animals kept its nose poke in the central port more than X s after the presentation of the visual stimuli, the trial

was treated as a missing error. X was drawn from a uniform distribution with a range of [0.5, 1]. Failure to choose the correct port

(left/right) within 5 s after nose withdrawal from the central port was also treated as a miss error, although it rarely occurred (< 5%).

There was no punishment in any error trials, and the next trial was allowed to be initiated after ITI. In no-signal trials, animals need to

wait for 0.2�0.6 s without stimulus and another 0.5�1 s to obtain a reward from the central port. There was no cue to distinguish

the initial delay (0.2�0.6 s) and reward delay (0.5�1 s). Thus, animals did not have any external clue to differentiate signal trials from

no-signal trials, except for the presentation of the signal itself. In FC trials, the shutter was closed 0.5 s after stimulus presentation

onset, and rats were forced to choose either the left or right port (Figures 1A and 1B, bottom). In cases where no stimuli were pre-

sented in FC trials, the animals were never rewarded.

Session B followed the same protocol as session A, except that only a single stimulus difficulty was used. We applied a medium

stimulus contrast level in FC trials in session A.

Electrophysiological recordings
A custom-designed electrode composed of two eight-tetrodes (tungsten wire, 12.5 mm, California Fine Wire, Grover Beach, CA) was

used for the simultaneous recordings of V1 and PPC. The tetrodes were individually covered by a polyimide tube (A-M Systems, Se-

quim, WA), placed at a 100 mm separation, and typically had an impedance of 120–1000 kU at 1 kHz. The signals were recorded with

Open Ephys (Cambridge, MA) at a sampling rate of 30 kHz and bandpass filtered between 0.3 and 6 kHz. The tetrodes were lowered

approximately 40 mm after each recording session.

Spike sorting and screening criteria of units
All analyses were performed using MATLAB (MathWorks, Natick, MA, USA). To detect single-neuron responses, the spikes were

manually clustered with MClust (A.D. Redish, University of Minnesota) for MATLAB. Only neurons that met the following criteria

were included for further analyses: (1) units with sufficient isolation quality (isolation distance R 15, isolation distance is a measure
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of unit isolation quality in high dimensional feature space from tetrode recording);57 (2) units with reliable refractory periods (viola-

tions < 1% of all spikes); and (3) units with sufficient mean firing rates in the �0.3 – 0.5 s after cue onset (> 1 Hz).

Behavioral data analysis
Spatial choice accuracy was defined as the percentage of correct port choices in trials where either outer port was chosen upon pre-

sentation of a peripheral stimulus (Figures 1D and S1A). Themiss rate was the percentage of central port choices in trials where visual

stimuli were presented in 3C trials (Figures 1E and S1B). The correct rejection rate was the percentage of central choices in trials

where visual stimuli were omitted in 3C trials (Figures 1F and S1C). Reaction time was defined as the duration from stimulus presen-

tation onset to nose withdrawal from the central hole. Trials with reaction times < 100 ms were considered invalid and excluded from

the calculation of spatial choice accuracy as theywere considered too soon to respond to the stimulus. All error bars are presented as

mean ± SEM. All violin plots combine a boxplot with a kernel density estimation procedure. The boxplot inside the violin shows the

quartile, whisker, and median values as white dots (Figures S2A–S2H).

We classified the following three choice types based on the subjects’ detection performance (Figures 1A–1C): (1) Hit were trials

when subjects successfully chose a left or right port in 3C or before shutter closure in FC. (2) Miss-correct (Miss+) were trials

when the nose remained in the central port over 0.5 s and subjects chose the correct port after shutter closure. (3) Miss-incorrect

(Miss-) were trials when the nose remained in the central port over 0.5 s and subjects chose the incorrect port after shutter closure.

Trials with missing responses in 3C were excluded from the analysis of comparison across choice types because they could not be

categorized into Miss+ or Miss-. We set a maximum time for peripheral choice of 0.5 s�after the shutter closed in FC trials. However,

in this dataset there was no single instance where rats did not choose the peripheral port after the shutter closed.

To estimate the impact of task parameters on behavioral performance, we conducted a generalized linear model (GLM) analysis for

spatial choice (left/right) and hit/miss choice (Figures 1H and S1F). In the models, we used the logit function as link function. For

spatial choice GLM analysis, we prepared trials in which they performed peripheral choices. Task parameters included binary stim-

ulus predictors (1 was stimulus presence, and 0 otherwise), previous peripheral reward (1 was rewarded, 0 otherwise), and previous

central reward (1 was rewarded, 0 otherwise). The model was fit with these predictors. For hit/miss choice GLM analysis, we first

prepared trials in which stimulus was present. Task parameters included binary predictors of previous peripheral reward (1 was re-

warded, 0 otherwise), previous central reward (1 was rewarded, 0 otherwise), and previous failure (1 failed, 0 otherwise). Then, we

fitted the model to behavioral performance using the same procedure as the spatial choice GLM analysis. To quantify the impact

of each task parameter, we calculated the difference between explained variance (R2) of the full model and partial model. The partial

model lacks a target task parameter.

QUANTIFICATION AND STATISTICAL ANALYSIS

Time-locked kernel regression and visual sensitivity
To identify the task and behavioral variables of responsive neurons, we used a time-locked kernel regression approach (Figures 2A,

S3A, and S3B).58 In this approach, the firing rate of recorded neurons is described as a linear sum of task predictors aligned to task

events. In this study, we considered the stimulus onset and reaction timing as task events. According to this kernel, the predicted

firing rate fnðtÞ for a neuron n is described as

fnðtÞ =
X
l

X
ts˛S

Kl;nðt� tsÞ+
X
tM˛M

KM;nðt� tMÞ+
X
tD˛D

KD;nðt� tDÞ+
X
r

X
tR˛R

Kr;nðt� tRÞ+
X
tF˛F

KF;nðt� tFÞ+
X
w

Kw;nðtÞ+ ε

where l represents the stimulus direction (ipsi or contra), r represents the previous reward direction (ipsi, contra, or center), w rep-

resents the whole-trial kernel types (reaction time; RT or moving time; MT) and S; M; D; R; F represents the set of times to cover

each predictor window. Kl;n;KM;n; KD;n; Kr;n; KF;n; Kw;n represents the stimulus, motor-preparation, choice preparation, previous

reward, previous failure, and whole-trial (RT or MT) kernels for neuron n. The stimulus kernels cover the window 0–0.3 s from stimulus

onset, the motor preparation and choice preparation kernels cover the window �0.3–0 s from the reaction timing (central withdrawn

timing), previous reward and previous failure kernels cover the window �0.1 – 0.1 s from stimulus onset. The motor preparation and

the choice preparation kernels are identical except that the latter is designed to be sensitive to choice directions (ipsi-direction is a

negative value). The stimulus, motor preparation, previous reward, and previous failure kernels coded as ‘‘1’’ or ‘‘0,’’ and the choice

preparation kernel has a value of ‘‘-1,’’ ‘‘0,’’ and ‘‘1,’’ which negative and positive value indicated that ipsi- and contra-direction, zero

indicated central-choice. The whole-trial kernels consist of the reaction time (RT) and moving time (MT), which has one value that

remained constant for the entire trial. The values for RT and MT were min-max normalized to 0-1 range. To fit the firing rate to the

model, the firing rate was binned into 0.01 s bins and then smoothed with a causal Gaussian filter with a standard deviation of

0.03 s. The stimulus (ipsi and contra) and preparation (motor and choice) kernels then contain LS; LM;LD = 30 time bins, the

previous reward (ipsi and contra) and failure kernels contain LR; LF = 20 time bins, and the whole-trial kernels (RT and MT) contain

LW = 1 time bins. We therefore made the design matrix DM by concatenating parameterized kernel matrices for a subset of trials

of size L 3T (L = 23LS + LM + LD + 23LR + LF + 23LW = 162 time bins, and T = 503Ntrials time bins) (Figure S3A).

To estimate the optimal weights for each neuron’s kernels without overfitting, we estimated a weight vector wn to solve the penal-

ized residual sum of squares with elastic net regularization consisting of 99% L2 and 1% L1 methods during the time-locked kernel

regression (using MATLAB package cvglmnet https://web.stanford.edu/�hastie/glmnet_matlab/intro.html).59 During weight

ll
OPEN ACCESS

e3 Current Biology 31, 1–13.e1–e6, June 21, 2021

Please cite this article in press as: Osako et al., Contribution of non-sensory neurons in visual cortical areas to visually guided decisions in the rat,
Current Biology (2021), https://doi.org/10.1016/j.cub.2021.03.099

Article

https://web.stanford.edu/%7Ehastie/glmnet_matlab/intro.html
https://web.stanford.edu/%7Ehastie/glmnet_matlab/intro.html


estimation, we used the parameters in elastic net regularization l which is calculated by minimizing cross-validated (3-fold) error

within training dataset. The predicted firing rates were constructed as Pn = DMTwn.

To determine whether each neuron is sensitive to each task and behavioral kernels, we prepared a predictor matrix with full kernels

(real designmatrix) and amatrix in which the target kernel is set to zero within whole-time points (Partial model, Figure S3A, right). We

then fit the model with each design matrix to predict firing rates and calculated the explained variance (R2
full, R

2
partial) of the full and

partial models, in either case with tenfold cross-validation by leaving out a random 10% subset of trials to calculate the model per-

formance. Each fold consisted of equal proportions of contra-stimulus, ipsi-stimulus, and no stimulus emitted trials (Figure S3A, bot-

tom). The explained variance was calculated from model-predicted and actual neuronal activity in test trials. We used an elastic-net

regularization consisting of 99% L2 and 1% L1 methods during the time-locked kernel regression to prevent over-fitting.59 If the ex-

plained variance of the partial model ðR2
partialÞ was significantly reduced compared to the full model (R2

full), the neuron was deemed

selective to the target kernel (Figure S3B, paired t test, Holm-Bonferroni correction for all comparison). Neurons selective to the stim-

ulus contra kernel were labeled stimulus-preferring neurons, and the other neurons were labeled stimulus non-preferring neurons.

Note that neurons selective to the stimulus ipsi kernel were excluded from the analyses in Figures 3, 4, 5, and 6. Nevertheless, those

neurons were relatively few and their inclusion/exclusion did not affect our conclusion.

Spike train analysis
We recorded 951 neurons (V1: 515, PPC: 436 neurons) from 62 sessions in seven rats. Unless otherwise stated, the activity of each

neuron was binned at 0.01 s and smoothed with a causal Gaussian filter with a standard deviation of 0.03 s to obtain the temporal

profile of each neuronal activity.

For visualization (Figures 2C and S3C) and analysis, firing rates were z-scored relative to trial-by-trial baseline rates (from the win-

dow �0.5 to 0 s).

Statistics
We evaluated the statistical significance in the analysis using data resampling with a bootstrapping procedure.60 We estimated the p

value for the bootstrapping procedure by computing the ratio (1+X) / (N+1), where X indicates overlapping data points between the

two distributions, and N indicates iterations. Since we used 1,000 bootstraps, two distributions with no overlap resulted in p < 0.001,

and two distributions with x% overlap resulted in P »x/100.

State-space analysis
For state-space analysis, we used neurons with R 20 available trials for each Hit+ and Miss+ condition. To characterize the popu-

lation structure and the temporal pattern among all neurons during the analysis window (�0.1 – 0.15 s from stimulus onset), z-scored

firing rates were formatted as X˛ RN 3CT , where N is the total number of neurons, C is the total number of conditions (choice types),

and T is the number of analyzed time points. Principal component analysis (PCA) was used to reduce the dimensionality of the pop-

ulation from the number of neurons to ten principal components (PCs). Each PC represents a weighted combination of individual

neuronal activity, which summarizes population activity.

To estimate the difference of each neural trajectory at each time point across choice types in the PC space, we prepared a dataset

by bootstrapping 1,000 times with different subsets of twelve trials for each choice type. For the control dataset, trials were shuffled

within Hit+ and Miss+ conditions. We then calculated the sensitivity index (d0) for each PC as follows:

d02
i ðtÞ =

�
mHit +
i ðtÞ � mMiss+

i ðtÞ�2
1
2

�
ðsHit +

i ðtÞÞ2 + ðsMiss+
i ðtÞÞ2

�; i˛½3ð10Þ�; t˛½�0:5s1:0s�

where mHit +
i ðtÞ and mMiss+

i ðtÞ are themean values of the i-th PC at time t in Hit+ andMiss+ trials, respectively, and sHit +i ðtÞ and sMiss+
i ðtÞ

are the standard deviation of the i-th PC at time t in Hit+ and Miss+ trials, respectively. We used the sensitivity in the first three or ten

PCs subspace defined as the square root of d02ðtÞ (Figures 3D, 3G, 3I, and S4C), as follows:

d02ðtÞ =
X
3ð10Þ

d02
i ðtÞ

For statistical significance of the trajectories between Hit+ and Miss+ (Figures 3B, 3C, and S4B), we calculated p value as described

in statistics section with the level of significance at 0.05.

State space analysis at each task and behavioral axis
For the state-space analysis at a specific task and behavioral axis (Figures 4 and S4D), we applied a variant of the ‘‘Coding Direction’’

analysis.50,61 We first calculated the condition-averaged z-scored firing rate (Hit+/Miss+, or stimulus presence/absence) for each

neuron for relevant epoch. To obtain the coding direction, we computed the difference of firing rates between conditions. Specifically,

we defined the following four axes. The ‘‘state axis’’ was computed from the dissociation of neuronal activity between the Hit+ and

Miss+ trials in the pre-stimulus window (�0.5 – 0 s from stimulus onset). The ‘‘movement axis’’ was computed from the dissociation of

neuronal activity between the Hit+ and Miss+ trials in the movement window (0.3 – 0.5 s from stimulus onset). The rats moved to the

contra-lateral port in the Hit+ trials because the Hit+ trials were defined as a peripheral choice before 0.5 s from stimulus onset; rather,
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the Miss+ trials consisted of only delayed response after 0.5 s from stimulus onset. The ‘‘stimulus axis’’ was computed from the

dissociation of neuronal activity between stimulus presence and absence trials in the during-stimulus window (0 - 0.15 s from stim-

ulus onset). Finally, the ‘‘decision axis’’ was computed from the dissociation of neuronal activity between the Hit+ and Miss+ trials in

the same window (0 - 0.15 s from stimulus onset). The decision axis captures variable components such as decision formation, mo-

tor-preparation, and other subjective states. We prepared the four vectors, which are mean population activitywa of length Nunit 3 1,

indexed by the four axes. We then obtained the orthogonal axes by orthogonalizing the four vectors wa with the QR-decomposition:

W = QR

whereW = ½wState wMovement wStimulus wDecison� is a matrix whose columns corresponding to the difference of firing rates of each axis.Q

is an orthogonal matrix, and R is an upper triangular matrix. We then obtained the orthogonalized axis vectors wt
a by the first four

columns of Q. These vectors span the orthogonal subspace in neuronal population activity space.

The projections of each axis were computed by dot product aswt
a x, where x is anNunit 3ð2 3timeÞmatrix of smoothed, trial-aver-

aged firing rates across Hit+/Miss+ conditions.

For the statistical significance of the differences in choice-type projections for each axis, we computed the W using a subset of

trials (40%) in each condition and then projected the data from the remaining subset of trials (60%) onto each axis. The procedure

was repeated 100 times with shuffling trials within each condition. The sign of the projection in Hit+ was aligned to be positive in each

analysis epoch. We then compared the resampling distributions between Hit+ andMiss+ or distance and zero. If the distributions are

not overlapped in 2SD range (95.5% data in this range), they are defined as significantly dissociated.

To confirm whether the statistical significance of the resampling method described above is statistical noise, we conducted the

simulation analysis using a noise dataset. We generated the random digits ranged �1 to 1 for 20-40 trials in two arbitrary conditions

as a noise dataset and prepared 266 simulated neurons, the same number of actual data in V1. Then, the same analysis described

above was performed with 100 iterations.

Classification (decoding) analysis
For classifiers, we used support vector machines (SVM) with a linear kernel function implemented using the MATLAB fitcsvm library.

All population classification was analyzed on the concatenated neuronal activity of individual neurons. Because the number of simul-

taneously-recorded neurons was low in our dataset, we constructed ‘‘pseudo-trials’’ by randomly extracting trials from desired con-

ditions for each neuron.62 For the training and testing dataset, the number of trials in each condition was matched to prevent bias for

training classifiers. We used tenfold cross-validation by leaving a 10% subset of trials for prediction to avoid overfitting. This proced-

ure was repeated 100 times. Hyperparameter such as C regularization weight was determined by optimization to minimize loss of

validation dataset in a grid search manner (searched range 10�5 � 105).63

For two-class classification, such as stimulus classification (presence/absence) (Figure 2E) and choice type (Hit+/Miss+) (Figures

5A–5C and S5), we used the firing rate during stimulus window (0 – 0.15 s from stimulus onset) and pre-stimulus window (�0.2 – 0 s

from stimulus onset) for each individual neuron, respectively. We then concatenated neuronal activity as described above and per-

formed training and predictions. For classificationmetrics, we used classification improvement over shuffled (only in Hit+/Miss+ clas-

sification), which is calculated by classification accuracy in real data minus shuffled data. This ensures that high values represent the

presence of neuronal information and low values represent its absence.64 To test statistical significance, if the zero was < 2SDs

(95.5% distribution) of the distribution of bootstrapped classification improvement, the data was deemed significantly informative.

To classify the choice types with the simultaneously recorded population (Figures 6A and 6B), we first extracted sessions withR 5

neurons in each region andR 20 trials in each condition (20 sessions). We trained the classifier using the same procedure described

above and predicted the test data. In the de-correlated population in V1 and PPC (Figure 6B), the trial order was shuffled within each

choice type for each neuron. We then calculated the classification accuracy of real data and the de-correlated population using the

procedure described above.

Tomeasure the contributions of each neuron for the choice types (Figure 5D), we compared weight distributions of the classifier for

different neuronal types, that is, contra-stimulus selective neurons and the other selective neurons. The neuronal weight was normal-

ized to unity length. For statistical significance, we performed a one-way ANOVA test with LSD post hoc comparisons.

Stability (cross-temporal classification analysis)
To estimate the stability of population coding, we applied a cross-temporal classification analysis where the classifiers were trained

and tested with unique time samples (Figure S5). Each classifier trained at time ttrained can also be tested on its classification ability to

predict the choice outcome at time ttested. For visualization, we computed the classification improvement over shuffled data as

described above (see classification analysis). The negative value was rounded to zero, and the above 0.5 value was rounded to

0.5. When we test the statistical significance of predictability, we used the same metrics with the classification improvement

described above using unrounded value.

To estimate the stability of population coding, we calculated Pearson’s correlation coefficients between the neuronal weights of

each classifier at time ttrained and ttested (Figures S5C and S5D). To quantify the time-resolved decay of population activity pattern, we

used Pearson’s correlation coefficients 0 – 0.5 s from time ttrained (Figure S5D) in �0.2 s–0 s training time. For comparison between

populations, we used Kolmogorov–Smirnov test followed by post hoc Tukey tests for subpopulations and regions (Figure S5D).
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Noise correlation
Noise is defined as the trial-to-trial variability of the neural response from the mean under a given choice type condition. Noise cor-

relation was defined as the correlation coefficient between the noise of a given neuron pair within the same choice type conditions.

Specifically, we arranged the firing rates of single neurons in a trial-by-time matrix per choice type with a time resolution of 50ms

spanning �0.4 – +0.4 s after the stimulus onset. The matrix was z-scored with the mean and the standard deviation of the trials at

each time point for each choice type. Then, we calculated Pearson’s correlation coefficients of the z-scored firing rates (i.e., noise)

for each pair of neurons at each time point (Figures 6C, 6D, and S6C).

Cell-type classification
To classify the putative fast-spiking (FS) interneuron and regular-spiking (RS) excitatory neurons, we calculated trough to late peak

and firing rate for each recorded unit (Figures S6A and S6B). We then determined the cell types by clustering the units in the dimen-

sion of the parameters using the k-means algorithm (k = 2) with these two variables using the MATLAB kmeans function. After clus-

tering units, we defined clusters that had a lower trough to late peak compared to the other cluster as putative FS interneurons and the

other as RS excitatory neurons.
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